Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13306-13316, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690945

RESUMEN

Traditional superwettable membranes for demulsification of oil/water emulsions could not maintain their separation performance for long because of low demulsification capacity and surface fouling during practical applications. A charging membrane could repel the contaminants for a while, the charge of which would gradually be neutralized during the separation progress. Here, a superhydrophilic piezoelectric membrane (SPM) with sustained demulsification and antifouling capacity is proposed for achieving prolonged emulsion separation, which is capable of converting inherent pulse hydraulic filtration pressure into pulse voltage. A pulse voltage up to -7.6 V is generated to intercept the oil by expediting the deformation and coalescence of emulsified oil droplets, realizing the demulsification. Furthermore, it repels negatively charged oil droplets, avoiding membrane fouling. Additionally, any organic foulants adhering to the membrane undergo degradation facilitated by the generated reactive oxygen species. The separation data demonstrate a 98.85% efficiency with a flux decline ratio below 14% during a 2 h separation duration and a nearly 100% flux recovery of SPM. This research opens new avenues in membrane separation, environmental remediation, etc.

2.
Nano Lett ; 23(23): 11043-11050, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38032845

RESUMEN

Layered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(p-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.6 MPa, strain of 3.2%), high ion selectivity of 0.87, and an excellent output power density of 15.7 W/m2 at 50-fold concentration gradient. Excitingly, the heterogeneous membrane presents a high power density of 6.8 W/m2 at a larger testing area of 0.79 mm2 and long-term stability. This heterogeneous membrane construction provides a viable strategy for the enhancement of mechanical properties and osmotic energy conversion of 2D materials.

3.
J Environ Manage ; 370: 122586, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299127

RESUMEN

Inspired by ecological floating beds to treat water pollution through photosynthesis, we employed a combination of calcination and hydrothermal methods to construct a photothermal-assisted photocatalysis system based on a floating monolithic porous mesh of g-C3N4 (MPMCN) loaded with the excellent photothermal material Bi2MoO6 (BMO), forming a BMO/MPMCN S-scheme heterojunction. This approach improved the utilization efficiency of solar light by BMO/MPMCN, minimized heat loss, and enhanced the overall temperature of the material during the reaction process, thereby accelerating interfacial electron transfer. The unique floating structure confers a larger specific surface area to BMO/MPMCN, providing more reaction sites for TC pollutants and efficiently removing TC contamination from water. BMO/MPMCN degradated 99.3% of TC after 90 min of photothermal reaction, and exhibited good recyclability and reusability. Structural and performance characterizations of the material were carried out using techniques such as XRD, TEM, electrochemical testing, and ESR. Furthermore, the corresponding band structure and S-scheme electron transfer mechanism of the BMO/MPMCN heterojunction were deduced through the combination of in-situ XPS and UPS. The possible degradation pathways of TC and the ecological toxicity changes of intermediate products were analyzed. Finally, a mechanistic model for the photothermal-assisted photocatalytic degradation of TC in water by the BMO/MPMCN S-scheme heterojunction was established, providing a novel approach for the practical application of photocatalysis technology.

4.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375282

RESUMEN

In this study, a Z-Scheme WO3/CoO p-n heterojunction with a 0D/3D structure was designed and prepared via a simple solvothermal approach to remove the combined pollution of tetracycline and heavy metal Cr(VI) in water. The 0D WO3 nanoparticles adhered to the surface of the 3D octahedral CoO to facilitate the construction of Z-scheme p-n heterojunctions, which could avoid the deactivation of the monomeric material due to agglomeration, extend the optical response range, and separate the photogenerated electronhole pairs. The degradation efficiency of mixed pollutants after a 70 min reaction was significantly higher than that of monomeric TC and Cr(VI). Among them, a 70% WO3/CoO heterojunction had the best photocatalytic degradation effect on the mixture of TC and Cr(VI) pollutants, and the removing rate was 95.35% and 70.2%, respectively. Meanwhile, after five cycles, the removal rate of the mixed pollutants by the 70% WO3/CoO remained almost unchanged, indicating that the Z-scheme WO3/CoO p-n heterojunction has good stability. In addition, for an active component capture experiment, ESR and LC-MS were employed to reveal the possible Z-scheme pathway under the built-in electric field of the p-n heterojunction and photocatalytic removing mechanism of TC and Cr(VI). These results offer a promising idea for the treatment of the combined pollution of antibiotics and heavy metals by a Z-scheme WO3/CoO p-n heterojunction photocatalyst, and have broad application prospects: boosted tetracycline and Cr(VI) simultaneous cleanup over a Z-scheme WO3/CoO p-n heterojunction with a 0D/3D structure under visible light.

5.
Small ; 18(10): e2106649, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921591

RESUMEN

Nature creates fascinating self-organized spatiotemporal patterns through the delicate control of reaction-diffusion dynamics. As the primary unit of cortical bone, osteon has concentric lamellar architecture, which plays a crucial role in the mechanical and physiological functions of bone. However, it remains a great challenge to fabricate the osteon-like structure in a natural self-organization way. Taking advantage of the nonequilibrium reaction in hydrogels, a simple mineralization strategy to closely mimic the formation of osteon in a mild physiological condition is developed. By constructing two reverse concentration gradients of ions from periphery to interior of cylindrical hydrogel, spatiotemporal self-organization of calcium phosphate in concentric rings is generated. It is noteworthy that minerals in different layers possess diverse contents and crystalline phases, which further guide the adhesion and spread of osteoblasts on these patterns, resembling the architecture and cytological behavior of osteon. Besides, theoretical data indicates the predominate role of ion concentrations and pH values of solution, in good accordance with experimental results. Independent of precise instruments, this lifelike method is easily obtained, cost-efficient, and effectively imitates the mineral deposition in osteon from a physiochemical view. The strategy may be expanded to develop other functional material patterns via spatiotemporal self-organization.


Asunto(s)
Osteón , Hidrogeles , Huesos , Osteón/fisiología , Hidrogeles/química , Minerales , Osteoblastos
6.
Nano Lett ; 20(7): 4895-4900, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567866

RESUMEN

Ultrafast oil/water separation based on tunable superwettability switch remains a big challenge. Here, inspired by the ultrafast water transport mechanism in sarracenia, we develop a micro/nanostructured porous membrane with conducting polymer nanotip arrays through the surface-initiated polymerizations. By modulating the height (ranging from 49-529 nm) and redox states of nanotips, a smart reversible superwettability switch is facile to obtain with contact angles of water/oil arranging from 161° to about 0°. Besides, liquid transport speed was accelerated more than 1.5 times by increasing the nanotip length. The water flux could reach up to 50326 L m-2 h-1 (1000 times that of a typical industrial ultrafiltration membrane). This is attributed to the stable and continuous water film along the nanotips, which provide a lubrication layer, leading to an increase of permeability. This work provides significant insights into macro/nanostructured membrane design for smart separation, blood lipid filtration, and smart nanoreactors with high permeability.

7.
Environ Geochem Health ; 43(2): 813-835, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32281053

RESUMEN

The study area is a part of the North China Plain, where groundwater is heavily abstracted for drinking and irrigation purposes. Groundwater quality is adversely affected due to rapid economic development and urbanization. Therefore, the purposes of this study were to evaluate the suitability of groundwater for drinking and irrigation purposes and to quantify the associated human health risks in the southern part of Gu'an County, North China Plain. The matter-element extension method based on entropy weight was used to evaluate the water quality for drinking, while sodium adsorption ratio, sodium percentage (%Na), residual sodium carbonate and magnesium hazard were used to evaluate the water quality for irrigation. Non-carcinogenic and carcinogenic health risks via different exposure ways were evaluated for different age groups. The study found that the quality of both deep and shallow groundwater in this area was generally suitable for drinking. Deep water quality has better quality than the shallow water. However, 8.70% and 73.92% of water samples pose non-carcinogenic health risks on adults and children, respectively. Children and adults are also at cancer risk due to Cr6+ and As in drinking groundwater in this area. The main responsible parameters for non-carcinogenic risk are Cr6+, F- and Fe, and Cr6+ is also responsible for carcinogenic risk. These toxic elements are mainly from industries. Therefore, deterioration of groundwater quality can be prevented by strengthening the sewage management of various industries.


Asunto(s)
Riego Agrícola , Agua Potable , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua , Adulto , Niño , China , Humanos , Medición de Riesgo , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
8.
Small ; 11(15): 1782-6, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25408487

RESUMEN

A series of surfaces that can either be fully wetted or non-wetted by three kinds of ionic liquids (ILs) are successfully designed by rationally controlling surface chemistries and structures. Meanwhile, the adhesion forces between these surfaces and the ILs can also be effectively modulated in a wide range. This fundamental research will greatly promote the development of IL-based materials in practical applications.

9.
Water Environ Res ; 96(9): e11134, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39300740

RESUMEN

Groundwater is an important part of water resources, with many characteristics: widespreading, steady changing, good water quality, and usable. Therefore, it is an ideal drinking water source. However, with the rapidly economic development and the accelerated urbanization process, the problem of groundwater pollution has become increasingly serious. In this study, the eastern part of Yongning County was taken as the study area, 30 groundwater samples from 1997 to 1998, 2007 to 2008, and 2017 to 2018 were selected for water quality assessment and health risk assessment. The results showed that the groundwater chemical type had a tendency to change from HCO3-Ca·Mg type to SO4·Cl-Ca·Mg type, and the rock weathering was the important factor controlling the groundwater hydrochemistry in the eastern part of Yongning County. The water quality evaluation of Mn and As was grade II, and the water quality evaluation of Cu, Zn, Cr6+, Cd, and Mo was grade I. Both carcinogenic and non-carcinogenic risks were higher in children than in adults, the acceptable frequency of adults was higher than that of children, and the area with higher risks was distributed in the central and easternmost regions of Yongning County. As was a more sensitive factor to carcinogenic risk than Cr6+. Therefore, we should pay more attention to the governance of As and the health of children's drinking water. Special attention also should be paid to the water environment protection in the eastern parts of Yongning County. Water quality assessment and health risk assessment in the study area lay a foundation for water pollution control and water environmental protection in the future. PRACTITIONER POINTS: The hydrochemical type changes from HCO3-Ca·Mg type to SO4·Cl-Ca·Mg type, which is mainly affected by rock weathering. According to the Bayesian water quality assessment: Mn and As was II, and Cr belongs to I is small. As was the main carcinogenic factor, Mn was the main non-carcinogenic factor, and the risk was higher in children than adults.


Asunto(s)
Teorema de Bayes , Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Medición de Riesgo , China , Contaminantes Químicos del Agua/análisis , Humanos , Agua Potable/química , Agua Potable/análisis
10.
Water Environ Res ; 96(6): e11063, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881202

RESUMEN

The rapid development of the social economy and the influence of human activities can lead to aggravated groundwater pollution. Groundwater safety is the premise of residents' health. Therefore, studying the sustainable utilization and health risks of groundwater quality is important. The groundwater quality and potential health risks were evaluated in the Shijiazhuang area, which is located in the North China Plain in this paper. Based on 159 groundwater samples collected in the study area, the potential health risks of As, Cr6+, Ni, Pb, F-, and NO3 - to humans were evaluated from oral and skin contact. Results of the human health risk assessment showed that the average carcinogenic risk and non-carcinogenic risk of children are higher than those of adults. According to the spatial distribution of the total risk value, adults and children in the southwest of the study area face higher risks. Because of the uncertainty of USEPA, Monte Carlo simulation was used to calculate the probability of health risk assessment and prioritization of contaminant treatment. The results of the Monte Carlo simulation showed that the acceptable range for children is 6.82%, and the acceptable range for adults is 18.07%. According to the HRWM model, carcinogenic pollutants mainly include As, Cr6+, and Ni. The most important chemical species of As is HAsO4 2-, followed by H2AsO4 -. Similarly, CrO4 2- and Ni2+ are the main forms of Cr6+ and Ni. The results of this study can provide data support for the protection and management of groundwater quality in the North China Plain. PRACTITIONER POINTS: Children are more susceptible to carcinogenic risk than adults. After calculation, the main influencing elements are Ni and Cr. Metal morphology analysis was carried out, and the results showed that HAsO4 2-, CrO4 2-, and Ni2+ were the main types.


Asunto(s)
Agua Subterránea , Método de Montecarlo , Contaminantes Químicos del Agua , China , Agua Subterránea/química , Medición de Riesgo , Humanos , Contaminantes Químicos del Agua/análisis , Ciudades , Monitoreo del Ambiente , Niño , Adulto
11.
Front Pharmacol ; 15: 1425844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351088

RESUMEN

Introduction: Premature ovarian insufficiency (POI) has affected about 3.7% of women of reproductive age and is a major factor contributing to infertility. Bushen Huoxue formula (BHF), a traditional Chinese medicine prescription, is clinically used to treat POI in China. This study aims to investigate the potential mechanisms of BHF in combating POI using corticosterone-induced rats and palmitic acid (PA)-challenged human ovarian granulosa cells (GCs). Methods: Initially, ultra performance liquid chromatography tandem mass spectrometry was employed to analyze the components of BHF. The pharmacodynamic parameters evaluated included body weight, ovaries index, and serum hormone in rats. Follicle numbers were observed using H&E staining. Additionally, PCNA and TUNEL staining were used to assess GCs proliferation and apoptosis, respectively. Lipid accumulation and ROS levels were examined using Oil Red O and ROS staining. Protein expressions were determined by western blot. To probe mechanisms, cell viability and E2 levels in BHF-treated, PA-stimulated GCs were determined using MTT and ELISA, respectively. Cell apoptosis and ROS levels were assessed using TUNEL and ROS staining. Proteins related to lipid metabolism and autophagy in PA-stimulated GCs were studied using agonists. Results: Our results shown that BHF effectively normalized serum hormone levels, including follicle-stimulating hormone (FSH), anti-Müllerian hormone (AMH), estradiol (E2), and luteinizing hormone (LH). Concurrently, BHF also significantly reduced follicular atresia and promoted cell proliferation while inhibiting apoptosis in POI rats. Furthermore, BHF mitigated ovarian lipid accumulation by modulating lipid metabolism, which included reducing lipid synthesis (expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α), increasing lipid catabolism (expression of adipose triglyceride lipase), and enhancing lipid oxidation (expression of carnitine palmitoyl transferase 1A). Mechanistically, the therapeutic effects of BHF on POI were linked with alleviation of lipid deposition-induced reactive oxygen species (ROS) accumulation and excessive autophagy, corroborating the results in PA-challenged GCs. After treatment with elesclomol (a ROS inducer) and rapamycin (an autophagy inducer) in GCs, the effects of BHF were almost counteracted under model conditions. Conclusion: These findings suggest that BHF alleviates the symptoms of POI by altering lipid metabolism and reducing lipid accumulation-induced ROS and autophagy, offering evidence for BHF's efficacy in treating POI clinically.

12.
Water Environ Res ; 96(8): e11078, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39087861

RESUMEN

Petroleum hydrocarbons (PHCs) can be biodegraded into CO2, and PHC-contaminated aquifers are always deemed as carbon sources. Fortunately, some carbon fixation microorganisms have been found in PHC-contaminated sites. However, most of the studies are related to volatile short-chain PHC, and few studies focus on long-chain PHC-contaminated sites. To reveal the carbon fixation microorganisms in these sites, in the study, a long-chain PHC polluted site in North China was selected. Through hydrochemical and metagenomics analysis, the structure and capacity of carbon fixing microorganisms in the site were revealed. Results showed that there were many kinds of carbon fixed microorganisms that were identified such as Flavobacterium, Pseudomonas. HP/4HB, rTCA, and DC/4HB cycles were dominated carbon fixation pathways. The long-chain PHC were weakly correlated with carbon fixation microorganisms, but it may stimulate the growth of some carbon fixation microorganisms, such as microorganisms involved in rTCA cycle. PRACTITIONER POINTS: The microorganisms with carbon fixation gene exist in the aquifer contaminated by long-chain petroleum hydrocarbon. Microorganisms that have the ability to degrade petroleum also have the ability to carbon fixation. Long-chain petroleum hydrocarbon may promote the growth of carbon fixation microorganisms.


Asunto(s)
Ciclo del Carbono , Agua Subterránea , Hidrocarburos , Petróleo , Contaminantes Químicos del Agua , Petróleo/metabolismo , Hidrocarburos/metabolismo , Agua Subterránea/microbiología , Agua Subterránea/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , China
13.
Chemosphere ; 346: 140634, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944761

RESUMEN

Solar energy is the inevitable choice to achieve the low-carbon, green, and circular development of society, and photocatalysis technology is one of the shining pearls. To make full use of the solar spectrum and solve the shortcomings of the recovery difficulty of powdery materials and the loss of activity due to the influence of the external environment, it is possible to construct floating materials using melamine sponges to recover photocatalytic materials quickly. At the same time, floating materials can absorb oxygen in the air for the generation of active groups, effectively solving the problem of less O2 in the water. The carbon-based materials have excellent light absorption properties, high thermal conductivity, and excellent photothermal conversion efficiency and are ideal for constructing floating photothermal photocatalytic systems. As an example, we combined a cheap melamine sponge with urea, prepared a hollow porous network structure g-C3N4 (HPNCN) with a high specific surface area by direct thermal shrinkage method, and then attached the CoO to its surface by hydrothermal method to form a heterojunction with a suitable band gap. Various characterization tests verified the photothermal-photocatalytic properties. Among them, 30% CoO/HPNCN has the best photocatalytic degradation effect on tetracycline (TC), and the removal rate is 88.1%. After five cycles, the removal rate is only 5% lower than the initial, indicating that it has good stability and recyclability. We conducted an active ingredient capture experiment, ESR, and LC-MS analysis to clarify the intermediates and reaction mechanism of TC photocatalytic degradation. On this basis, the ECOSAR program and QSAR method were used to analyze the environmental toxicity of TC and its intermediate products. These results provide a broad prospect for the potential application of the floating photothermal-photocatalysis system in antibiotic pollution control and its application in other fields.


Asunto(s)
Antibacterianos , Tetraciclina , Porosidad , Carbono , Cromatografía Liquida , Oxígeno , Catálisis , Luz
14.
Adv Mater ; 36(14): e2311446, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160323

RESUMEN

Interfacial floating robots have promising applications in carriers, environmental monitoring, water treatment, and so on. Even though, engineering smart robots with both precisely efficient navigation and elimination of water pollutants in long term remains a challenge, as the superhydrophobicity greatly lowers resistance for aquatic motion while sacrificing chemical reactivity of the surface. Here, a pollutant-removing superhydrophobic robot integrated with well-assembled iron oxide-bismuth sulfide heterojunction composite minerals, which provide both light and magnetic propulsion, and the ability of catalytic degradation, is reported. The motion velocity of the robot reaches up to 51.9 mm s-1 within only 300 ms of acceleration under the orchestration of light, and brakes rapidly (≈200-300 ms) once turn off the light. And magnetism extends the robot to work in broad range of surface tensions in any programmable trajectory. Besides, purification of polluted water is efficiently achieved in situ and the degradation efficiency exhibits eightfold enhancements under the effect of light-triggered photothermal behavior coupled with magnetic induction, overcoming the dilemma of efficient motion with catalytic superhydrophobicity. This strategy developed here provides guidelines for the explorations of high-performance smart devices.

15.
Imeta ; 3(3): e199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898986

RESUMEN

The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.

16.
Heliyon ; 9(12): e22572, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089998

RESUMEN

Background: Previous study confirmed that both TaohongSiwu decoction (THSWD) and Dubosiella newyorkensis improved hypertension-induced endothelial dysfunction. However, the mechanism of THSWD combined with Dubosiella newyorkensis remains unclear. Purpos: e: We aimed to investigate the microecological mechanism underlying the THSWD combined with Dubosiella newyorkensis for the prevention of hypertensive vascular endothelial dysfunction. Methods: Eight percent high-salt diet was applied to induce hypertension in a mouse model for 4 weeks. THSWD, Dubosiella newyorkensis and THSWD combined with Dubosiella newyorkensis were used to intervene in the model mice to observe the changes of systolic blood pressure (SBP), body weight, blood routine, endothelial function, gut contents microbiota and bile acid metabolites. Results: Results revealed that THSWD combined with Dubosiella newyorkensis significantly restored blood pressure and regulated body weight, and markedly downregulating serum and vascular levels of endothelin-1 (ET-1), thrombin regulatory protein (TM), vascular hemophilia factor (vWF) and vascular endothelial growth factor (VEGF), and upregulating nitric oxide (NO) levels compared with the model group. Notably, It altered the diversity and community structure of gut contents microbiota in mice. Lactobacillus and Allobaculum was enormously up-regulated at the genus level. Serum bile acid differential metabolites cholic acid and chenodeoxycholic acid were markedly altered. Futhermore, there was a close relationship between Lactobacillus, Allobaculum and endothelial function indexes in mice. Conclusion: Lactobacillus and Allobaculum play important roles in the prevention of vascular endothelial dysfunction in hypertension during the THSWD combined with Dubosiella newyorkensis.

17.
ACS Cent Sci ; 9(2): 318-327, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36844482

RESUMEN

Superhydrophobic surfaces are suggested to deal with hydrate blockage because they can greatly reduce adhesion with the formed hydrates. However, they may promote the formation of fresh hydrate nuclei by inducing an orderly arrangement of water molecules, further aggravating hydrate blockage and meanwhile suffering from their fragile surfaces. Here, inspired by glass sponges, we report a robust anti-hydrate-nucleation superhydrophobic three-dimensional (3D) porous skeleton, perfectly resolving the conflict between inhibiting hydrate nucleation and superhydrophobicity. The high specific area of the 3D porous skeleton ensures an increase in terminal hydroxyl (inhibitory groups) content without damaging the superhydrophobicity, achieving the inhibition to fresh hydrates and antiadhesion to formed hydrates. Molecular dynamics simulation results indicate that terminal hydroxyls on a superhydrophobic surface can inhibit the formation of hydrate cages by disordering the arrangement of water molecules. And experimental data prove that the induction time of hydrate formation was prolonged by 84.4% and the hydrate adhesive force was reduced by 98.7%. Furthermore, this porous skeleton still maintains excellent inhibition and antiadhesion properties even after erosion for 4 h at 1500 rpm. Therefore, this research paves the way toward developing novel materials applied in the oil and gas industry, carbon capture and storage, etc.

18.
Mater Horiz ; 10(11): 4903-4913, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37750251

RESUMEN

Conversion between mechanical and electrical cues is usually considered unidirectional in cells with cardiomyocytes being an exception. Here, we discover a material-induced external electric field (Eex) triggers an electro-mechanical coupling feedback loop in cells other than cardiomyocytes, human umbilical vein endothelial cells (HUVECs), by opening their mechanosensitive Piezo1 channels. When HUVECs are cultured on patterned piezoelectric materials, the materials generate Eex (confined at the cellular scale) to polarize intracellular calcium ions ([Ca2+]i), forming a built-in electric field (Ein) opposing Eex. Furthermore, the [Ca2+]i polarization stimulates HUVECs to shrink their cytoskeletons, activating Piezo1 channels to induce influx of extracellular Ca2+ that gradually increases Ein to balance Eex. Such an electro-mechanical coupling feedback loop directs pre-angiogenic activities such as alignment, elongation, and migration of HUVECs. Activated calcium dynamics during the coupling further modulate the downstream angiogenesis-inducing eNOS/NO pathway. These findings lay a foundation for developing new ways of electrical stimulation-based disease treatment.


Asunto(s)
Calcio , Humanos , Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Cultivadas , Iones/metabolismo
19.
Adv Mater ; 34(31): e2203109, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35673895

RESUMEN

The adaptability to wide salinities remains a big challenge for artificial nanofluidic systems, which plays a vital role in water-energy nexus science. Here, inspired by euryhaline fish, sandwich-structured nanochannel systems are constructed to realize salinity self-adaptive nanofluidic diodes, which lead to high-performance salinity-gradient power generators with low internal resistance. Adaptive to changing salinity, the pore morphology of one side of the nanochannel system switches from a 1D straight nanochannel (45 nm) to 3D network pores (1.9 nm pore size and ≈1013 pore density), along with three orders of magnitude change for charge density. Thus, the abundant surface charges and narrow pores render the membrane-based osmotic power generator with power density up to 26.22 Wm-2 . The salinity-adaptive membrane solves the surface charge-shielding problem caused by abundant mobile ions in high salinity and increases the overlapping degree of the electric double layer. The dynamic adaption process of the membrane to the hypersaline environment endows it with good salt endurance and stability. New routes for designing nanofluidic devices functionally adaptable to different salinities and building power generators with excellent salt endurance are demonstrated.

20.
ACS Nano ; 16(11): 17613-17640, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36322865

RESUMEN

Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.


Asunto(s)
Materiales Biomiméticos , Biomimética , Transporte Iónico , Polímeros/química , Materiales Biomiméticos/química , Membranas Artificiales , Canales Iónicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA