Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Transl Med ; 20(1): 218, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562743

RESUMEN

BACKGROUND: Early diagnosis and treatment of chronic pancreatitis (CP) are limited. In this study, St13, a co-chaperone protein, was investigated whether it constituted a novel regulatory target in CP. Meanwhile, we evaluated the value of micro-PET/CT in the early diagnosis of CP. METHODS: Data from healthy control individuals and patients with alcoholic CP (ACP) or non-ACP (nACP) were analysed. PRSS1 transgenic mice (PRSS1Tg) were treated with ethanol or caerulein to mimic the development of ACP or nACP, respectively. Pancreatic lipid metabolite profiling was performed in human and PRSS1Tg model mice. The potential functions of St13 were investigated by crossing PRSS1Tg mice with St13-/- mice via immunoprecipitation and lipid metabolomics. Micro-PET/CT was performed to evaluate pancreatic morphology and fibrosis in CP model. RESULTS: The arachidonic acid (AA) pathway ranked the most commonly dysregulated lipid pathway in ACP and nACP in human and mice. Knockout of St13 exacerbated fatty replacement and fibrosis in CP model. Sdf2l1 was identified as a binding partner of St13 as it stabilizes the IRE1α-XBP1s signalling pathway, which regulates COX-2, an important component in AA metabolism. Micro-PET/CT with 68Ga-FAPI-04 was useful for evaluating pancreatic morphology and fibrosis in CP model mice 2 weeks after modelling. CONCLUSION: St13 is functionally activated in acinar cells and protects against the cellular characteristics of CP by binding Sdf2l1, regulating AA pathway. 68Ga-FAPI-04 PET/CT may be a very valuable approach for the early diagnosis of CP. These findings thus provide novel insights into both diagnosis and treatment of CP.


Asunto(s)
Células Acinares , Endorribonucleasas , Animales , Humanos , Ratones , Células Acinares/metabolismo , Ácido Araquidónico/metabolismo , Proteínas Portadoras/metabolismo , Endorribonucleasas/metabolismo , Fibrosis , Radioisótopos de Galio , Ratones Noqueados , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Serina-Treonina Quinasas , Tripsina/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
Front Immunol ; 13: 964138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091018

RESUMEN

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Asunto(s)
Apolipoproteínas E , Macrófagos , Microglía , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/inmunología , Biología Computacional , Macrófagos/inmunología , Ratones , Microglía/inmunología , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/inmunología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/inmunología
3.
Cell Death Dis ; 13(10): 893, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273194

RESUMEN

Noninflammatory clearance of dying cells by professional phagocytes, termed efferocytosis, is fundamental in both homeostasis and inflammatory fibrosis disease but has not been confirmed to occur in chronic pancreatitis (CP). Here, we investigated whether efferocytosis constitutes a novel regulatory target in CP and its mechanisms. PRSS1 transgenic (PRSS1Tg) mice were treated with caerulein to mimic CP development. Phospholipid metabolite profiling and epigenetic assays were performed with PRSS1Tg CP models. The potential functions of Atp8b1 in CP model were clarified using Atp8b1-overexpressing adeno-associated virus, immunofluorescence, enzyme-linked immunosorbent assay(ELISA), and lipid metabolomic approaches. ATAC-seq combined with RNA-seq was then used to identify transcription factors binding to the Atp8b1 promoter, and ChIP-qPCR and luciferase assays were used to confirm that the identified transcription factor bound to the Atp8b1 promoter, and to identify the specific binding site. Flow cytometry was performed to analyze the proportion of pancreatic macrophages. Decreased efferocytosis with aggravated inflammation was identified in CP. The lysophosphatidylcholine (LPC) pathway was the most obviously dysregulated phospholipid pathway, and LPC and Atp8b1 expression gradually decreased during CP development. H3K27me3 ChIP-seq showed that increased Atp8b1 promoter methylation led to transcriptional inhibition. Atp8b1 complementation substantially increased the LPC concentration and improved CP outcomes. Bhlha15 was identified as a transcription factor that binds to the Atp8b1 promoter and regulates phospholipid metabolism. Our study indicates that the acinar Atp8b1/LPC pathway acts as an important "find-me" signal for macrophages and plays a protective role in CP, with Atp8b1 transcription promoted by the acinar cell-specific transcription factor Bhlha15. Bhlha15, Atp8b1, and LPC could be clinically translated into valuable therapeutic targets to overcome the limitations of current CP therapies.


Asunto(s)
Adenosina Trifosfatasas , Lisofosfatidilcolinas , Macrófagos , Pancreatitis Crónica , Animales , Ratones , Células Acinares/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ceruletida/toxicidad , Histonas/metabolismo , Inflamación/metabolismo , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Macrófagos/metabolismo , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Factores de Transcripción/metabolismo
4.
Yao Xue Xue Bao ; 45(8): 1057-63, 2010 Aug.
Artículo en Zh | MEDLINE | ID: mdl-21351596

RESUMEN

The aim of this study is to investigate the critical factor affecting the properties of PLGA microspheres fabricated by a solid-in-oil-in-water (S/O/W) emulsion technique with BSA as a model protein. Prior to encapsulation, the BSA microparticles were fabricated by a modified freezing-induced phase separation method. The microparticles were subsequently encapsulated into PLGA microspheres by S/O/W emulsion method, then Motic BA200 biological microscope, confocal laser scanning microscope, scanning electron microscope were used to observe the structure of S/O/W emulsion and PLGA microspheres. The protein content extracted or released from BSA microspheres was measured by Bradford protein assay method. It was found that NaCl added in the outer aqueous phase effectively suppressed material exchange between the inner and outer phase of S/O/W emulsion. Then, the structure and permeability of obtained microspheres were influenced. As a result, with the increase of NaCl concentration in the outer aqueous phase, the encapsulation efficiency of microspheres significantly increased from 60% to more than 85%, the burst release of microspheres reduced from 70% to 20%, and the particle size decreased from 103 microm to 62 microm. Furthermore, the rehydration of encapsulated protein was also retarded and then integrity of BSA was successfully protected during encapsulation process. In vitro release test showed that BSA released from PLGA microspheres in a sustained manner for more than 30 days.


Asunto(s)
Ácido Láctico/química , Ácido Poliglicólico/química , Albúmina Sérica Bovina/química , Cloruro de Sodio/química , Preparaciones de Acción Retardada , Composición de Medicamentos , Emulsiones/química , Ácido Láctico/administración & dosificación , Microscopía Confocal , Microscopía Electrónica de Rastreo , Microesferas , Aceites , Tamaño de la Partícula , Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica Bovina/administración & dosificación , Agua
5.
Theranostics ; 10(18): 8298-8314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724472

RESUMEN

Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Mitocondriales/genética , Páncreas/patología , Pancreatitis/genética , Proteína p53 Supresora de Tumor/genética , Células Acinares/patología , Factor de Transcripción Activador 6/genética , Adulto , Animales , Apoptosis/genética , Estudios de Casos y Controles , Ceruletida/administración & dosificación , Ceruletida/toxicidad , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Noqueados , Persona de Mediana Edad , Páncreas/citología , Pancreatitis/inducido químicamente , Pancreatitis/patología , Activación Transcripcional , Tripsina/genética
6.
Cell Death Dis ; 11(11): 966, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177505

RESUMEN

Treatment of acute pancreatitis (AP) and chronic pancreatitis (CP) remains problematic due to a lack of knowledge about disease-specific regulatory targets and mechanisms. The purpose of this study was to screen proteins related to endoplasmic reticulum (ER) stress and apoptosis pathways that may play a role in pancreatitis. Human pancreatic tissues including AP, CP, and healthy volunteers were collected during surgery. Humanized PRSS1 (protease serine 1) transgenic (PRSS1Tg) mice were constructed and treated with caerulein to mimic the development of human AP and CP. Potential regulatory proteins in pancreatitis were identified by proteomic screen using pancreatic tissues of PRSS1Tg AP mice. Adenoviral shRNA-mediated knockdown of identified proteins, followed by functional assays was performed to validate their roles. Functional analyses included transmission electron microscopy for ultrastructural analysis; qRT-PCR, western blotting, co-immunoprecipitation, immunohistochemistry, and immunofluorescence for assessment of gene or protein expression, and TUNEL assays for assessment of acinar cell apoptosis. Humanized PRSS1Tg mice could mimic the development of human pancreatic inflammatory diseases. EMC6 and APAF1 were identified as potential regulatory molecules in AP and CP models by proteomic analysis. Both EMC6 and APAF1 regulated apoptosis and inflammatory injury in pancreatic inflammatory diseases. Moreover, APAF1 was regulated by EMC6, induced apoptosis to injure acinar cells and promoted inflammation. In the progression of pancreatitis, EMC6 was activated and then upregulated APAF1 to induce acinar cell apoptosis and inflammatory injury. These findings suggest that EMC6 may be a new therapeutic target for the treatment of pancreatic inflammatory diseases.


Asunto(s)
Factor Apoptótico 1 Activador de Proteasas/metabolismo , Proteínas de la Membrana/metabolismo , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Enfermedad Aguda , Animales , Apoptosis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Biología Molecular/métodos , Pancreatitis Crónica/genética , Proteómica/métodos
8.
Di Yi Jun Yi Da Xue Xue Bao ; 25(4): 387-90, 2005 Apr.
Artículo en Zh | MEDLINE | ID: mdl-15837634

RESUMEN

OBJECTIVE: To investigate whether recombinant hepatitis C virus (HCV) is capable of long-term replication in vivo in susceptible cells. METHODS: A human liver cell line 7721 was infected with recombinant HCV and after 72-hour incubation, the presence of HCV RNA in the cells and the supernatant were detected by reverse transcriptase (RT)-PCR. The expression of HCV antigen was detected by immunohistochemistry and observed by confocal laser scanning microscope. RESULTS: The plus and minus strands of HCV RNA were detected in the infected cells and the plus strand in the supernatant 72 h after infection. Expressions of HCV core antigens and E1 antigens were found within the cytoplasm. CONCLUSIONS: The recombinant HCV can replicate in 7721 cell line in vitro and this HCV infection model can be useful for studying the mechanism of HCV infection and replication.


Asunto(s)
Hepacivirus/fisiología , Neoplasias Hepáticas/virología , ARN Viral/análisis , Recombinación Genética , Replicación Viral , Línea Celular Tumoral , Hepacivirus/genética , Antígenos de la Hepatitis C/análisis , Humanos
9.
Di Yi Jun Yi Da Xue Xue Bao ; 24(1): 79-80, 84, 2004 Jan.
Artículo en Zh | MEDLINE | ID: mdl-14724105

RESUMEN

OBJECTIVE: To observe the microscopic characteristics of laterally spreading tumor (LST) cell line in primary culture. METHODS: The cells isolated from a rectum LST specimen obtained by endoscopic mucosal resection was primary cultured, followed by observation with scanning and transmission electron microscope in comparison with the cells of adenocarcinoma and normal mucosa of the rectum. RESULTS: Scanning and transmission electron microscopes both revealed numerous microvilli covering the surface of the LST cells, and the cytoplasm contained large quantity of lysosomes, mitochondria and phagosomes. Obviously heterogeneous cell nuclei were present with abnormal nuclear fossa and huge nucleoli. CONCLUSION: The cultured LST cells are highly malignant.


Asunto(s)
Adenocarcinoma/ultraestructura , Neoplasias del Recto/ultraestructura , Línea Celular Tumoral , Humanos , Microscopía Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA