Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2209979120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626554

RESUMEN

The electrolysis of nitrate reduction to ammonia (NRA) is promising for obtaining value-added chemicals and mitigating environmental concerns. Recently, catalysts with high-performance ammonia synthesis from nitrate has been achieved under alkaline or acidic conditions. However, NRA in neutral solution still suffers from the low yield rate and selectivity of ammonia due to the low binding affinity and nucleophilicity of NO3-. Here, we confirmed that the in-situ-generated Fe(II) ions existed as specifically adsorbed cations in the inner Helmholtz plane (IHP) with a low redox potential. Inspired by this, a strategy (Fe-IHP strategy) was proposed to enhance NRA activity by tuning the affinity of the electrode-electrolyte interface. The specifically adsorbed Fe(II) ions [SA-Fe(II)] greatly alleviated the electrostatic repulsion around the interfaceresulting in a 10-fold lower in the adsorption-free energy of NO3- when compared to the case without SA-Fe(II). Meanwhile, the modulated interface accelerated the kinetic mass transfer process by 25 folds compared to the control. Under neutral conditions, a Faraday efficiency of 99.6%, a selectivity of 99%, and an extremely high NH3 yield rate of 485.8 mmol h-1 g-1 FeOOH were achieved. Theoretical calculations and in-situ Raman spectroscopy confirmed the electron-rich state of the SA-Fe(II) donated to p orbitals of N atom and favored the hydrogenation of *NO to *NOH for promoting the formation of high-selectivity ammonia. In sum, these findings complement the textbook on the specific adsorption of cations and provide insights into the design of low-cost NRA catalysts with efficient ammonia synthesis.


Asunto(s)
Amoníaco , Nitratos , Electrólitos , Adsorción , Hierro , Compuestos Ferrosos
2.
Glob Chang Biol ; 29(7): 1984-1997, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607170

RESUMEN

The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg-1 day-1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0-0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2 O (0.98 ± 0.44 µg N kg-1 day-1 , 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2 O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.


Asunto(s)
Amoníaco , Suelo , Fertilizantes/análisis , Nitrificación , Oxidación-Reducción , Microbiología del Suelo , Bacterias , Archaea , Agricultura
3.
Glob Chang Biol ; 29(10): 2697-2713, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840688

RESUMEN

Significant attention has been given to the way in which the soil nitrogen (N) cycle responds to permafrost thaw in recent years, yet little is known about anaerobic N transformations in thermokarst lakes, which account for more than one-third of thermokarst landforms across permafrost regions. Based on the N isotope dilution and tracing technique, combined with qPCR and high-throughput sequencing, we presented large-scale measurements of anaerobic N transformations of sediments across 30 thermokarst lakes over the Tibetan alpine permafrost region. Our results showed that gross N mineralization, ammonium immobilization, and dissimilatory nitrate reduction rates in thermokarst lakes were higher in the eastern part of our study area than in the west. Denitrification dominated in the dissimilatory nitrate reduction processes, being two and one orders of magnitude higher than anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA), respectively. The abundances of the dissimilatory nitrate reduction genes (nirK, nirS, hzsB, and nrfA) exhibited patterns consistent with sediment N transformation rates, while α diversity did not. The inter-lake variability in gross N mineralization and ammonium immobilization was dominantly driven by microbial biomass, while the variability in anammox and DNRA was driven by substrate supply and organic carbon content, respectively. Denitrification was jointly affected by nirS abundance and organic carbon content. Overall, the patterns and drivers of anaerobic N transformation rates detected in this study provide a new perspective on potential N release, retention, and removal upon the formation and development of thermokarst lakes.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/análisis , Lagos , Nitrógeno , Anaerobiosis , Desnitrificación , Compuestos Orgánicos , Carbono
4.
Environ Sci Technol ; 57(7): 2970-2980, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36719089

RESUMEN

Paddy fields are one of the most important sources of nitrous oxide (N2O), but biogeochemical N2O production mechanisms in the soil profile remain unclear. Our study used incubation, dual-isotope (15N-18O) labeling methods, and molecular techniques to elucidate N2O production characteristics and mechanisms in the soil profile (0-60 cm) during summer fallow, rice cropping, and winter fallow periods. The results pointed out that biotic processes dominated N2O production (72.2-100%) and N2O from the tillage layer accounted for 91.0-98.5% of total N2O in the soil profile. Heterotrophic denitrification (HD) was the main process generating N2O, contributing between 53.4 and 96.6%, the remainder being due to ammonia oxidation pathways, which was further confirmed by metagenomics and quantitative polymerase chain reaction (qPCR) assays. Nitrifier denitrification (ND) was an important N2O production source, contributing 0-46.6% of total N2O production, which showed similar trends with N2O emissions. Among physicochemical and biological factors, ammonium content and the ratio of total organic matter to nitrate were the main driving factors affecting the contribution ratios of the ammonia oxidation pathways and HD pathway, respectively. Moisture content and pH affect norC-carrying Spirochetes and thus the N2O production rate. These findings confirm the importance of ND to N2O production and help to elucidate the impact of anthropogenic activities, including tillage, fertilization, and irrigation, on N2O production.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Amoníaco/análisis , Óxido Nitroso/análisis , Suelo/química
5.
Environ Sci Technol ; 57(1): 810-821, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36459424

RESUMEN

The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.


Asunto(s)
Archaea , Óxido Nitroso , Óxido Nitroso/análisis , Humedales , Amoníaco , Oxidación-Reducción , China , Bacterias/genética , Nitrificación , Microbiología del Suelo
6.
Environ Sci Technol ; 56(20): 14828-14839, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36194569

RESUMEN

Global estuarine ecosystems are experiencing severe nitrogen pollution and ocean acidification (OA) simultaneously. Sedimentary denitrification is an important way of reactive nitrogen removal but at the same time leads to the emission of large amounts of nitrous oxide (N2O), a potent greenhouse gas. It is known that OA in estuarine regions could impact denitrification and N2O production; however, the underlying mechanism is still underexplored. Here, sediment incubation and pure culture experiments were conducted to explore the OA impacts on microbial denitrification and the associated N2O emissions in estuarine sediments. Under neutral (in situ) conditions, fungal N2O emission dominated in the sediment, while the bacterial and fungal sources had a similar role under acidification. This indicated that acidification decreased the sedimentary fungal denitrification and likely inhibited the activity of fungal denitrifiers. To explore molecular mechanisms, a denitrifying fungal strain of Penicillium janthinellum was isolated from the sediments. By using deuterium-labeled single-cell Raman spectroscopy and isobaric tags for relative and absolute quantitation proteomics, we found that acidification inhibited electron transfers in P. janthinellum and downregulated expressions of the proteins related to energy production and conservation. Two collaborative pathways of energy generation in the P. janthinellum were further revealed, that is, aerobic oxidative phosphorylation and TCA cycle and anoxic pyruvate fermentation. This indicated a distinct energy supply strategy from bacterial denitrification. Our study provides insights into fungi-mediated nitrogen cycle in acidifying aquatic ecosystems.


Asunto(s)
Desnitrificación , Gases de Efecto Invernadero , Bacterias/metabolismo , Deuterio/metabolismo , Ecosistema , Gases de Efecto Invernadero/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Óxido Nitroso/análisis , Océanos y Mares , Piruvatos/metabolismo , Agua de Mar
7.
Environ Sci Technol ; 55(8): 4573-4584, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33733744

RESUMEN

The discovery of complete ammonia oxidation (comammox) has altered our understanding of nitrification, which is the rate-limiting process in the global nitrogen cycle. However, understanding the ecological role of comammox or its contribution to nitrification in both natural and artificial ecosystems is still in its infancy. Here, we investigated the community distribution and function of comammox bacteria in riparian ecosystems and analyzed interactions between comammox and other nitrogen cycling microorganisms. The comammox bacterial abundance and rate were higher in summer than in winter and higher in nonrhizosphere soils than in the rhizosphere. Fringe soils in the riparian zone comprise a comammox hotspot, where the abundance (2.58 × 108 copies g-1) and rate (0.86 mg N kg-1 d-1) of comammox were not only higher than at other sampling sites but also higher than those of other ammonia oxidation processes. The comammox rate correlated significantly positively with relative abundance of the comammox species Candidatus Nitrospira nitrificans but not with that of the species Candidatus Nitrospira nitrosa. Analysis of comammox interaction with other ammonia-oxidizing processes revealed ammonia-oxidizing archaea to dominate interface soils, comammox to dominate in fringe soils, and anaerobic ammonium oxidation (anammox) to dominate in interface sediments of the riparian zone. These results indicate that comammox may constitute an important and currently underestimated process of microbial nitrification in riparian zone ecosystems.


Asunto(s)
Amoníaco , Ecosistema , Archaea , Nitrificación , Oxidación-Reducción , Filogenia
8.
Environ Res ; 186: 109612, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668552

RESUMEN

Nitrate (NO3-) reduction partitioning between denitrification, anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation (DAMO), and dissimilatory nitrate reduction to ammonium (DNRA), can influence the nitrogen (N) use efficiency and crop production in arid farmland. The microbial structure, function and potential rates of denitrification, anammox, DAMO and DNRA, and their respective contributions to total NO3- reduction were investigated in rhizosphere and non-rhizosphere soil of four typical crops in north China by functional gene amplification, high-throughput sequencing, network analysis and isotopic tracing technique. The measured denitrification and DNRA rate varied from 0.0294 to 20.769 nmol N g-1 h-1and 2.4125-58.682 nmol N g-1 h-1, respectively, based on which DNRA pathway contributed to 84.44 ± 14.40% of dissimilatory NO3- reduction, hence dominated NO3- reduction processes compared to denitrification. Anammox and DAMO were not detected. High-throughput sequencing analysis on DNRA nrfA gene, and denitrification nirS and nirK genes demonstrated that these two processes did not correlate to corresponding gene abundance or dominant genus. RDA and Pearson's correlation analysis illustrated that DNRA rate was significantly correlated with the abundance of Chthiniobacter, as well as total organic matter (TOM); denitrification rate was significantly correlated with the abundance of Lautropia, so did TOM. Network analysis showed that the genus performed DNRA was the key connector in the microbial community of dissimilatory nitrate reducers. This study simultaneously investigated the dissimilatory nitrate reduction processes in rhizosphere and non-rhizosphere soils in arid farmland, highlighting that DNRA dominated NO3- reduction processes against denitrification. As denitrification results in N loss, whereas DNRA contributes to N retention, the relative contributions of DNRA versus denitrification activities should be considered appropriately when assessing N transformation processes and N fertilizer management in arid farmland fields.


Asunto(s)
Compuestos de Amonio , China , Desnitrificación , Granjas , Nitratos/análisis , Nitritos , Nitrógeno , Oxidación-Reducción , Rizosfera , Suelo
9.
Environ Res ; 180: 108867, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31708170

RESUMEN

The increased nitrogen (N) fertilizer usage caused substantial nitrate (NO3-) leaching into groundwater and eutrophication in downstream aquatic systems. Riparian zones positioned as the link interfaces of terrestrial and aquatic environments are effective in NO3- removal. However, the microbial mechanisms regulating NO3- reduction in riparian zones are still unclear. In this study, four microbial NO3- reduction processes were explored in fine-scale riparian soil horizons by isotopic tracing technique, qPCR of functional gene, high-throughput amplicon sequencing, and phylogenetic molecular ecological network analysis. Interestingly, anaerobic ammonium oxidation (anammox) contributed to NO3- removal of up to 48.2% only in waterward sediments but not in landward soil. Denitrification was still the most significant contributor to NO3- reduction (32.0-91.8%) and N-losses (51.7-100%). Additionally, dissimilatory nitrate reduction to ammonium (DNRA) played a key role in NO3- reduction (4.4-67.5%) and was even comparable to denitrification. Community structure analysis of denitrifying, anammox, and DNRA bacterial communities targeting the related functional gene showed that spatial heterogeneity played a greater role than both temporal and soil type (rhizosphere and non-rhizosphere soil) variability in microbial community structuring. Denitrification and DNRA communities were diverse, and their activities did not depend on gene abundance but were significantly related to organic matter, suggesting that gene abundance alone was insufficient in assessing their activity in riparian zones. Based on networks, DNRA plays a keystone role among the microbial NO3- reducers. As the last line of defense in the interception of terrestrial NO3-, these findings contribute to our understanding of NO3- removal mechanisms in riparian zones, and could potentially be exploited to reduce the diffusion of NO3- pollution.


Asunto(s)
Compuestos de Amonio , Nitratos , Rizosfera , Desnitrificación , Nitratos/química , Nitrógeno , Filogenia
10.
Environ Res ; 182: 109083, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31901627

RESUMEN

Freshwater ecosystems are undergoing extensive human disturbance of dam construction which form large amounts of reservoirs and lead to dramatic changes in hydraulic conditions. Bacterioplankton are key component of aquatic ecosystems. Investigation on their taxonomic compositions and associated functions responded to reservoir operation is essential to understand the ecological consequence of dam construction. In this study, we use the Three Gorges Reservoir as a model system. High-throughput sequencing is used to investigate the bacterioplankton community composition, and the bioinformatic tool of Tax4Fun is applied to predict the potential metabolic functions responded to reservoir impoundment. Results show that the taxonomic communities of bacterioplankton are significantly impacted by impoundment. The dominant group of Actinobacteria which accounts for 17.0%-58.1% of the retrieved sequences significantly increases after impoundment on phylum level. The influences of impoundment appear to be more apparent on order level that the relative abundances of four groups including Frankiales, Sphingomonadales, Sphingobacteriales and SubsectionI of class Cyanobacteria significantly vary after impoundment. In contrast, the predicted functional communities of bacterioplankton remain relatively stable that most of predicted functional categories including methane and nitrogen metabolisms have no significant variation after impoundment. Besides, significant distance decay patterns appear on the taxonomic communities after impoundment rather than the predicted functional communities. The environmental variables show significant impacts on the taxonomic community rather than predicted functional community, whereas the spatial variables have no effect on both taxonomic and predicted functional communities. In general, the taxonomic and predicted functional communities of bacterioplankton exhibit divergent responses to the impoundment in reservoir.


Asunto(s)
Bacteroidetes , Cianobacterias , Ecosistema , Organismos Acuáticos , China , Agua Dulce , Abastecimiento de Agua
11.
Environ Res ; 183: 109146, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31991341

RESUMEN

The importance and contribution of nitrogen compounds and the related microbial nitrogen cycling processes in fresh snow are not well understood under the current research background. We collected fresh snow samples from 21 cities that 80% are from China during 2016 and 2017. Principal component analysis showed that SO42- were in the first principal component, and N-compounds were the second. Furthermore, the main pollutant ions SO42- and NO3- were from anthropogenic sources, and SO42- contributed (61%) more to the pollution load than NO3- (29%), which were confirmed through a series of precipitation mechanism analysis. We selected five N-cycle processes (consist of oxidation and reduction processes) for molecular biology experiments, including Ammonia-oxidation process, Nitrite-oxidation process, Denitrification process, Anaerobic-ammoxidation process (Anammox) and Dissimilatory nitrate reduction to ammonium process (DNRA). Except ammonia-oxidizing archaeal (AOA) and bacterial (AOB) amoA genes (above 107 copies g-1), molecular assays of key functional genes in various nitrogen conversion processes showed a belowed detection limit number, and AOB abundance was always higher than AOA. The determination of the microbial transformation rate using the 15N-isotope tracer technique showed that the potential rate of five N-conversion processes was very low, which is basically consistent with the results from molecular biology studies. Taken together, our results illustrated that microbial nitrogen cycle processes are not the primary biological processes causing the pollution in China fresh snow.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Nitrógeno , Nieve , Amoníaco , China , Nitratos , Nitrógeno/metabolismo , Oxidación-Reducción , Nieve/química
12.
Appl Microbiol Biotechnol ; 104(12): 5535-5546, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32300854

RESUMEN

Over the past few decades, anaerobic ammonium oxidation (anammox) has been extensively documented at different scales in natural ecosystems. Previous studies have stated that the community composition of anammox bacteria is shaped mainly by environmental factors, whereas spatial factors have been largely overlooked. This study investigated biogeographical patterns of anammox bacterial communities using 42 sediment samples along a 4300-km stretch of the Yangtze River, the longest river in Asia. A significant distance-decay relationship was observed for anammox bacterial community similarity, which was significantly influenced by mean dendritic distance rather than environmental factors. This implied that dispersal limitation plays an important role in shaping biogeographical pattern of anammox community. Furthermore, our results revealed that neutral processes played vital role in shaping community assembly of anammox bacteria, and their communities were seriously dispersal limited. These findings contrast with previous studies on community similarities between broad taxonomic groups, which are mainly determined by niche-based selection owing to greater niche distances within broad taxonomic groups than in anammox bacteria. Importantly, the slope of the distance-decay curve was much steeper than previously reported for whole bacteria, which indicating the species turnover rate of anammox bacterial community was significantly higher than that of the whole bacterial community. Anammox bacteria harbor strong adhesion ability and low dispersal potential, and ultimately exhibited a high species turnover rate. Together, in the context of biogeography, our results highlight the importance of dispersal limitation in shaping the biogeographical pattern of anammox bacterial community.


Asunto(s)
Compuestos de Amonio/metabolismo , Sedimentos Geológicos/microbiología , Microbiota , Bacterias/genética , China , Ecosistema , Oxidación-Reducción , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , Ríos/microbiología
13.
J Basic Microbiol ; 59(4): 425-436, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30624810

RESUMEN

Ammonia oxidation, mainly driven by ammonia-oxidizing archaea (AOA) and bacteria (AOB), plays an important role in determining the rate of nitrification in riparian zones. However, the underlying factors driving the distribution and activity of AOA and AOB in riparian zones, especially in the rhizosphere of Phragmites communis remain unknown. This study revealed the dominance of AOA in ammonium oxidization with higher abundance and activity in both rhizosphere and bulk soil in summer and winter over AOB in riparian zones, based on molecular methods and double-inhibitors method. Phylogenetic analysis showed that 54d9 cluster and Nitrososphaera dominated the AOA community and Nitrosospira dominated the AOB, respectively. For the distribution of AOA and AOB, it was the spatial heterogeneity of physicochemical properties that had the most significant effect. Specifically, TOM & TC were the main physicochemical variables accounting for the difference in abundance and community composition of AOA, and TN had an important influence on AOB in the sediment/soil in riparian zones. For abundance and activity, seasonal heterogeneity and P. communis rhizosphere had a significant impact on the archaeal activity and abundance, respectively, but did not show significant influencing on AOB. These findings suggest that the small-scale environmental heterogeneities in riparian zones are important in shaping the community composition and abundance of AOA and AOB.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Bacterias/clasificación , Poaceae , Rizosfera , Microbiología del Suelo , Archaea/genética , Archaea/crecimiento & desarrollo , Archaea/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Ecosistema , Genes Arqueales/genética , Genes Bacterianos/genética , Sedimentos Geológicos/microbiología , Nitrificación/genética , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año
14.
J Environ Sci (China) ; 86: 141-153, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31787178

RESUMEN

With the increasing application of anammox for the treatment of high-strength industrial wastewater, application of anammox in municipal sewage has been gaining more attention. Sludge granulation in particular enhances the enrichment and retention of anammox bacteria in municipal sewage treatment systems. However, the performance of granular sludge under continuous and varying hydraulic loading shock remains little understood. In this study, the robustness of anammox granular sludge in treating low-strength municipal sewage under various shock loadings was investigated. Results showed that an upflow anaerobic sludge blanket (UASB) reactor with anammox granules performed well, with anammox specific activity up to 0.28 kg N/kg VSS/day and anti-loading shock capability up to 187.2 L/day during the 8-month testing period. The accumulation rate of N2O (<0.01 kg N/kg VSS/day) in the liquid phase was seven times higher than that of the gas phase, which could be mainly attributed to the incomplete denitrification and insufficient carbon source. However, only a small part of the produced N2O escaped into the atmosphere. High-throughput sequencing and molecular ecological network analyses also identified the bacterial diversity and community structure, indicating the potential resistance against loading shock. The composition and structural analyses showed that polysaccharides were an important functional component in the tightly bound extracellular polymeric substances (TB-EPS), which was the major EPS layer of anammox granules. Scanning electron microscopy (SEM) also showed that the gaps in between the anammox-clusters in the granules inhibit the flotation of the sludge and ensure efficient settling and retention of anammox granules.


Asunto(s)
Dióxido de Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo , Crecimiento Quimioautotrófico , Desnitrificación , Aguas Residuales
15.
Environ Microbiol ; 20(5): 1723-1738, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29528547

RESUMEN

The distribution and importance of anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) have been identified in aquatic ecosystems; their role in agricultural upland soils however has not yet been well investigated. In this study, we examined spatio-temporal distributions of anammox and n-damo bacteria in soil profiles (300 cm depth) from an agricultural upland. Monitoring nitrogen (N) conversion activity using isotope-tracing techniques over the course of one year showed denitrification (99.0% N-loss in the winter and 85.0% N-loss in the summer) predominated over anammox (1.0% N-loss in the winter and 14.4% N-loss in the summer) and n-damo (0.6% N-loss in the winter) in surface soils (0-20 cm). While below 20 cm depth, N-loss was dominated by anammox (79.4 ± 14.3% in the winter and 65.4 ± 12.5% in the summer) and n-damo was not detected. Phylogenetic analysis showed that Candidatus Brocadia anammoxidans dominated the anammox community in the surface soil and Candidatus Brocadia fulgida dominated below 20 cm depth. Dissimilatory nitrate reduction to ammonium (DNRA), another nitrite reduction process, was found to play a limited role (4.9 ± 3.5%) in the surface soil compared with denitrification; below 80 cm DNRA rates were much higher than rates of anammox and denitrification. Ammonium oxidation was the main source of NO2- above 80 cm (70.9 ± 23.3%), the key influencing factor on anammox rates, and nitrate reduction (100%) was the main NO2- source below 80 cm. Considering the anammox, n-damo and denitrification rates as a whole in the sampled soil profile, denitrification is still the main N-loss process in upland soils.


Asunto(s)
Bacterias/metabolismo , Nitrógeno/metabolismo , Microbiología del Suelo , Suelo/química , Compuestos de Amonio/metabolismo , Anaerobiosis , Bacterias/clasificación , Desnitrificación , Metano/metabolismo , Nitratos , Nitritos/metabolismo , Nitrógeno/química , Oxidación-Reducción , Filogenia
16.
Environ Sci Technol ; 52(11): 6226-6236, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750509

RESUMEN

Artificial microbial nitrogen (N) cycle hotspots in the plant-bed/ditch system were developed and investigated based on intact core and slurry assays measurement using isotopic tracing technology, quantitative PCR and high-throughput sequencing. By increasing hydraulic retention time and periodically fluctuating water level in heterogeneous riparian zones, hotspots of anammox, nitrification, denitrification, ammonium (NH4+) oxidation, nitrite (NO2-) oxidation, nitrate (NO3-) reduction and DNRA were all stimulated at the interface sediments, with the abundance and activity being about 1-3 orders of magnitude higher than those in nonhotspots. Isotopic pairing experiments revealed that in microbial hotspots, nitrite sources were higher than the sinks, and both NH4+ oxidation (55.8%) and NO3- reduction (44.2%) provided nitrite for anammox, which accounted for 43.0% of N-loss and 44.4% of NH4+ removal in riparian zones but did not involve nitrous oxide (N2O) emission risks. High-throughput analysis identified that bacterial quorum sensing mediated this anammox hotspot with B.fulgida dominating the anammox community, but it was B. anammoxidans and Jettenia sp. that contributed more to anammox activity. In the nonhotspot zones, the NO2- source (NO3- reduction dominated) was lower than the sink, limiting the effects on anammox. The in situ N2O flux measurement showed that the microbial hotspot had a 27.1% reduced N2O emission flux compared with the nonhotspot zones.


Asunto(s)
Compuestos de Amonio , Humedales , Desnitrificación , Nitratos , Nitrógeno , Óxido Nitroso , Oxidación-Reducción
17.
Environ Microbiol ; 19(6): 2468-2482, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28447395

RESUMEN

As an analogue of phosphorus, arsenic (As) has a biogeochemical cycle coupled closely with other key elements on the Earth, such as iron, sulfate and phosphate. It has been documented that microbial genes associated with As biotransformation are widely present in As-rich environments. Nonetheless, their presence in natural environment with low As levels remains unclear. To address this issue, we investigated the abundance levels and diversities of aioA, arrA, arsC and arsM genes in estuarine sediments at low As levels across Southeastern China to uncover biogeographic patterns at a large spatial scale. Unexpectedly, genes involved in As biotransformation were characterized by high abundance and diversity. The functional microbial communities showed a significant decrease in similarity along the geographic distance, with higher turnover rates than taxonomic microbial communities based on the similarities of 16S rRNA genes. Further investigation with niche-based models showed that deterministic processes played primary roles in shaping both functional and taxonomic microbial communities. Temperature, pH, total nitrogen concentration, carbon/nitrogen ratio and ferric iron concentration rather than As content in these sediments were significantly linked to functional microbial communities, while sediment temperature and pH were linked to taxonomic microbial communities. We proposed several possible mechanisms to explain these results.


Asunto(s)
Arsénico/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Biotransformación/fisiología , Sedimentos Geológicos/microbiología , Bacterias/genética , Biotransformación/genética , China , Ambiente , ARN Ribosómico 16S/genética , Humedales
18.
Appl Microbiol Biotechnol ; 100(4): 1977-1986, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26515563

RESUMEN

The nitrite-dependent anaerobic methane oxidation (n-damo) mediated by "Candidatus Methylomirabilis oxyfera" connects the biogeochemical carbon and nitrogen cycles in a novel way. Many environments have been reported to harbor such organism being slow-growing and oxygen-sensitive anaerobes. Here, we focused on the population of n-damo bacteria in a fluctuating habitat being the wetland in the water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China. A molecular approach demonstrated positive amplifications when targeting the functional pmoA gene only in the lower sites which endured longer flooding time in an elevation gradient. Only 1 operational taxonomic unit (OTU) in the lower elevation zone targeting the 16S ribosomal RNA (rRNA) gene was clustering into the NC-10 group a, which is presumed to be the true n-damo group. Moreover, a relatively low level of diversity was observed in this study. The abundances were as low as 4.7 × 10(2) to 1.5 × 10(3) copies g(-1) dry soil (ds) in the initial stage, which were almost the lowest reported. However, an increase was observed (3.2 × 10(3) to 5.3 × 10(4) copies g(-1) ds) after nearly 6 months of flooding. Intriguingly, the abundance of n-damo bacteria correlated positively with the accumulated flooding time (AFT). The current study revealed that n-damo bacteria can be detected in a fluctuating environment and the sites with longer flooding time seem to be preferred habitats. The water flooding may be the principal factor in this ecosystem by creating anoxic condition. The wide range of such habitats suggests a high potential of n-damo bacteria to play a key role in natural CH4 consumption.


Asunto(s)
Biodiversidad , Methylococcaceae/clasificación , Methylococcaceae/metabolismo , Nitritos/metabolismo , Microbiología del Suelo , Aerobiosis , Carga Bacteriana , China , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Methylococcaceae/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Humedales
19.
Appl Environ Microbiol ; 81(3): 938-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25416768

RESUMEN

The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to "Candidatus Brocadia" and "Candidatus Kuenenia" and two novel unidentified clusters were detected, with "Candidatus Brocadia" comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 10(4) to 9.65 × 10(4) copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 10(6) Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure.


Asunto(s)
Compuestos de Amonio/metabolismo , Biota , Nitrógeno/metabolismo , Microbiología del Suelo , China , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
20.
J Basic Microbiol ; 54(3): 190-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23686819

RESUMEN

Manure fertilizers are widely used in agriculture and highly impacted the soil microbial communities such as ammonia oxidizers. However, the knowledge on the communities of archaeal versus bacterial ammonia oxidizers in paddy soil affected by manure fertilization remains largely unknown, especially for a long-term influence. In present work, the impact of manure fertilization on the population of ammonia oxidizers, related potential nitrification rates (PNRs) and the key factors manipulating the impact were investigated through studying two composite soil cores (long-term fed with manure fertilization versus undisturbed). Moreover, soil incubated with NH(4)(+) for 5 weeks was designed to verify the field research. The results showed that the copy numbers of bacterial amoA gene in the manure fed soil were significant higher than those in the unfed soil (p < 0.05), suggesting a clear stimulating effect of long-term manure fertilization on the population of ammonia-oxidizing bacteria (AOB). The detected PNRs in the manure fed soil core (14-218 nmol L(-1) N g(-1) h(-1)) were significant higher than those in the unfed soil core (5-72 nmol L(-1) N g(-1) h(-1) ; p < 0.05). Highly correlations between the PNRs and the bacterial amoA gene copies rather than archaeal amoA gene were observed, indicating strong nitrification capacity related to bacterial ammonia oxidizers. The NH(4)(+) -N significantly correlated to the abundance of AOB (p < 0.01) and explained 96.1% of the environmental variation, showing the NH(4)(+) -N was the main factor impacting the population of AOB. The incubation experiment demonstrated a clear increase of the bacterial amoA gene abundance (2.0 × 10(6) to 8.4 × 10(6) g(-1) d.w.s. and 1.6 × 10(4) to 4.8 × 10(5) g(-1) d.w.s.) in both soil but not for the archaeal amoA gene, in agreement with the field observation. Overall, our results suggested that manure fertilization promoted the population size of bacterial ammonia oxidizers rather than their archaeal counterparts whether in long-term or short-term usage and the NH(4)(+) -N was the key impact factor.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Fertilizantes , Estiércol , Microbiología del Suelo , Suelo/química , Amoníaco/química , Nitrificación/genética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA