Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Inorg Chem ; 63(23): 10798-10808, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38781309

RESUMEN

Cu-SSZ-39 zeolite with 8-membered rings is regarded as a very promising catalyst in the NH3-SCR reaction, but its hydrothermal stability still remains to be improved. One of the solutions to promote hydrothermal stability is the insertion of rare earth elements in the product. Nevertheless, normal ion exchange of rare earth elements limits their contents in the zeolite product due to their large hydrated ionic radius and alkaline environment under hydrothermal conditions. Herein, we for the first time present a new method for the one-pot synthesis of Ce-SSZ-39 zeolite under solvent-free conditions. The key to success is the use of Ce-FAU zeolite as a precursor. The obtained product shows good crystallinity, sheet-like morphology, large BET surface area, and 4-coordinated Al species. Detailed investigations illustrate that Ce species in the Cu/Ce-SSZ-39 zeolite micropore can prevent the dealumination and thus formation of CuAlOx species during hydrothermal aging at 850 °C for 16 h, giving the excellent hydrothermal stability and thus showing the excellent catalytic performance in the NH3-SCR reaction. One-pot synthesis of Ce-SSZ-39 zeolite with excellent catalytic performance might open a new door for developing very efficient selective catalytic reduction (SCR) catalysts in near future.

2.
J Am Chem Soc ; 144(14): 6270-6277, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35271271

RESUMEN

Zeolite nanosheets with excellent mass transfer are attractive, but their successful syntheses are normally resulted from a huge number of experiments. Here, we show the design of a small organic template for the synthesis of self-pillared pentasil (SPP) zeolite nanosheets from theoretical calculations in interaction energies between organic templates and pentasil zeolite skeletons. As expected, the SPP zeolite nanosheets with the thickness at 10-20 nm have been synthesized successfully. Characterizations show that the SPP zeolite nanosheets with about 90% MFI and 10% MEL structures have good crystallinity, the house-of-card morphology, large surface area, and fully four-coordinated aluminum species. More importantly, methanol-to-propylene tests show that the SPP zeolite nanosheets exhibit much higher propylene selectivity and longer reaction lifetime than conventional ZSM-5 zeolite. These results offer a good opportunity to develop highly efficient zeolite catalysts in the future.

3.
Inorg Chem ; 61(51): 21115-21122, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36521022

RESUMEN

Rapid synthesis of Si-rich (SiO2/Al2O3 > 100) SSZ-13 zeolite under fluoride-free conditions is highly desirable but still challenging. Herein, we for the first time report a rapid synthesis of all silica and aluminosilicate (SiO2/Al2O3 > 100) SSZ-13 zeolite without the addition of fluoride species. The crystallization could be fully completed at 160 °C for 4 h when the aging of the starting gel is 3 h at room temperature after the addition of a zeolite seed. The key to success is the formation of more basic building units (4- and 6-membered rings) in the initial gel with the aging time of 3 h after the addition of a zeolite seed, leading to the successful rapid synthesis of Si-rich SSZ-13 zeolite. The obtained Si-rich SSZ-13 zeolite displays high crystallinity, uniform cubic morphology with a nanoparticle feature, and a large surface area. More importantly, the obtained Si-rich SSZ-13 zeolite displays excellent performance in the adsorption of ethanol and methanol-to-olefin reaction.

4.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641458

RESUMEN

Given the numerous industrial applications of zeolites as adsorbents, catalysts, and ion-exchangers, the development of new zeolite structures is highly desired to expand their practical applications. Currently, a general route to develop new zeolite structures is to use interlayer expansion agents to connect layered silicates. In this review, we briefly summarize the novel zeolite structures constructed from the lamellar precursor zeolites MWW, RUB-36, PREFER, Nu-6(1), COK-5, and PLS-1 via interlayer expansion. The contents of the summary contain detailed experiments, physicochemical characterizations, possible expansion mechanisms, and catalytic properties. In addition, the insertion of metal heteroatoms (such as Ti, Fe, Sn) into the layered zeolite precursor through interlayer expansion, which could be helpful to modify the catalytic function, is discussed.

5.
Molecules ; 26(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800313

RESUMEN

Developing sustainable routes for the synthesis of zeolites is still a vital and challenging task in zeolite scientific community. One of the typical examples is sustainable synthesis of aluminosilicate EU-1 zeolite, which is not very efficient and environmental-unfriendly under hydrothermal condition due to the use of a large amount of water as solvent. Herein, we report a sustainable synthesis route for aluminosilicate EU-1 zeolite without the use of solvent for the first time. The physicochemical properties of the obtained EU-1 zeolite are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry-differential thermal analysis (TG-DTA), N2 sorption, inductively coupled plasma (ICP) analysis, and solid nuclear magnetic resonance (NMR), which show the product has high crystallinity, uniform morphology, large BET surface area, and four-coordinated aluminum species. Moreover, the impact of synthesis conditions is investigated in detail. The sustainable synthesis of aluminosilicate EU-1 zeolite under solvent-free.


Asunto(s)
Silicatos de Aluminio/síntesis química , Zeolitas/química , Zeolitas/síntesis química , Silicatos de Aluminio/química , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Termogravimetría , Difracción de Rayos X
6.
Molecules ; 25(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824105

RESUMEN

As one of the most important porous materials, zeolites with intricate micropores have been widely employed as catalysts for decades due to their large pore volume, high surface area, and good thermal and hydrothermal stabilities. Among them, ferrierite (FER) zeolite with a two-dimensional micropore structure is an excellent heterogeneous catalyst for isomerization, carbonylation, cracking, and so on. In the past years, considering the important industrial application of FER zeolite, great efforts have been made to improve the synthesis of FER zeolite and thus decrease the synthesis cost and enhance catalytic performance. In this review, we briefly summarize the advances in the synthesis of FER zeolite including the development of synthesis routes, the use of organic templates, organotemplate-free synthesis, the strategies of morphology control, and the creation of intra-crystalline mesopores. Furthermore, the synthesis of hetero-atomic FER zeolites such as Fe-FER and Ti-FER has been discussed.


Asunto(s)
Minerales/química , Zeolitas/síntesis química
7.
Molecules ; 25(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053961

RESUMEN

Preparation of aluminosilicate ferrierite (FER) zeolite nanosheets with controllable thickness in the presence of a sole organic ammonium is attractive, but still challenging. In this report, with the employment of N,N-diethyl-cis-2,6-dimethylpiperidinium (DMP) as both a structure directing agent and crystal growth inhibitor, aluminosilicate FER zeolite nanosheets, with a variety of crystal thicknesses, ranging from 6 to 200 nm, are successfully synthesized under hydrothermal conditions. Very interestingly, the amount of DMP in the starting gel is the key factor for crystal thickness control of aluminosilicate FER zeolite nanosheets. The obtained FER products, with different thicknesses, are well characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), N2 sorption, thermogravimetric analysis (TG), inductively coupled plasma (ICP), and magic angle spinning nuclear magnetic resonance (MAS NMR) techniques. This simple strategy might provide a novel avenue for the synthesis of other zeolite nanosheets with controllable thickness.


Asunto(s)
Silicatos de Aluminio/química , Nanoestructuras/química , Zeolitas/química , Técnicas de Química Sintética , Espectroscopía de Resonancia Magnética , Nanoestructuras/ultraestructura , Difracción de Rayos X
8.
Angew Chem Int Ed Engl ; 58(35): 12138-12142, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31283076

RESUMEN

Currently, the synthesis of pure silica zeolites always requires the presence of organic structure-directing agents (OSDAs), which direct the assembly pathway and ultimately fill the pore space. A sustainable route is now reported for synthesizing pure silica zeolites in the absence of OSDAs from a combined strategy of zeolite seeding and alcohol filling, where the zeolite seeds direct crystallization of zeolite crystals from amorphous silica, while the alcohol is served as pore filling in the zeolites. Very importantly, the alcohol could be fully washed out from zeolite pores by water at room temperature, which completely avoids calcination at high temperature for removal of OSDAs in the synthesis of pure silica zeolites.

9.
J Am Chem Soc ; 137(3): 1052-5, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25574592

RESUMEN

Development of sustainable routes for synthesis of zeolites is very important because of wide applications of zeolites at large scale in the fields of catalysis, adsorption, and separation. Here we report a novel and generalized route for synthesis of zeolites in the presence of NH4F from grinding the anhydrous starting solid materials and heating at 140-240 °C. Accordingly, zeolites of MFI, BEA*, EUO, and TON structures have been successfully synthesized. The presence of F(-) drives the crystallization of these zeolites from amorphous phase. Compared with conventional hydrothermal synthesis, the synthesis in this work not only simplifies the synthesis process but also significantly enhances the zeolite yields. These features should be potentially of great importance for industrial production of zeolites at large scale in the future.

10.
J Am Chem Soc ; 136(6): 2503-10, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24450997

RESUMEN

Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.

11.
J Am Chem Soc ; 134(41): 16948-50, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23009896

RESUMEN

Homogeneous catalysts usually show higher catalytic activities than heterogeneous catalysts because of their high dispersion of catalytically active sites. We demonstrate here that heterogeneous catalysts of ionic liquids functionalized on superhydrophobic mesoporous polymers exhibit much higher activities in transesterification to form biodiesel than homogeneous catalysts of the ionic liquids themselves. This phenomenon is strongly related to the unique features of high enrichment and good miscibility of the superhydrophobic mesoporous polymers for the reactants. These features should allow the design and development of a wide variety of catalysts for the conversion of organic compounds.


Asunto(s)
Líquidos Iónicos/química , Polímeros/química , Catálisis , Dominio Catalítico , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , Porosidad , Propiedades de Superficie
12.
J Am Chem Soc ; 134(10): 4557-60, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22380406

RESUMEN

The relatively small and sole micropores in zeolite catalysts strongly influence the mass transfer and catalytic conversion of bulky molecules. We report here aluminosilicate zeolite ZSM-5 single crystals with b-axis-aligned mesopores, synthesized using a designed cationicamphiphilic copolymer as a mesoscale template. This sample exhibits excellent hydrothermal stability. The orientation of the mesopores was confirmed by scanning and transmission electron microscopy. More importantly, the b-axis-aligned mesoporous ZSM-5 shows much higher catalytic activities for bulky substrate conversion than conventional ZSM-5 and ZSM-5 with randomly oriented mesopores. The combination of good hydrothermal stability with high activities is important for design of novel zeolite catalysts. The b-axis-aligned mesoporous ZSM-5 reported here shows great potential for industrial applications.

13.
J Am Chem Soc ; 134(37): 15173-6, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22954021

RESUMEN

As important industrial materials, microporous zeolites are necessarily synthesized in the presence of solvents such as in hydrothermal, solvothermal, and ionothermal routes. We demonstrate here a simple and generalized solvent-free route for synthesizing various types of zeolites by mixing, grinding, and heating solid raw materials. Compared with conventional hydrothermal route, the avoidance of solvents in the synthesis not only significantly reduces the waste production, but also greatly increases the yield of zeolite products. In addition, the use of starting solid raw materials remarkably enhances the synthesis efficiency and reduces the use of raw materials, energy, and costs.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014738

RESUMEN

Zeolites have been widely employed in fields of petroleum refining, fine chemicals and environmental protection, but their syntheses are always performed in the presence of organic templates, which have many drawbacks such as high cost and polluted wastes. In recent years, the seed-directed synthesis of zeolites has been paid much attention due to its low-cost and environmentally friendly features. In this review, the seed-directed synthesis of Al-rich zeolites with homonuclear and heteronuclear features, the seed-directed synthesis of Si-rich zeolites assisted with ethanol and the utility of seed-directed synthesis have been summarized. This review could help zeolite researchers understand the recent progress of seed-directed synthesis.

15.
Dalton Trans ; 51(32): 12021-12025, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35503468

RESUMEN

Green routes for synthesizing pure silica zeolites are attractive but still challenging. Herein, we for the first time report a green route for synthesizing pure silica zeolites with six-membered rings (6MRs) by a combined strategy of ethanol filling and zeolite seeding. As a result, pure silica zeolites with 6MRs, such as SOD, MTN, and NON, could be successfully synthesized.

16.
Dalton Trans ; 51(10): 3845-3848, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35199821

RESUMEN

Beta zeolite with enrichment of polymorph B is successfully synthesized in the absence of fluorine species under solvent-free conditions. The phase composition of polymorph B in the sample is about 70%.

17.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736333

RESUMEN

The nanocomposite preparation procedure plays an important role in achieving a well-established heterostructured junction, and hence, an optimized photocatalytic activity. In this study, a series of g-C3N4/ZnO nanocomposites were prepared through two distinct procedures of a low-cost, environmentally-friendly, in-situ fabrication process, with urea and zinc acetate being the only precursor materials. The physicochemical properties of synthesized g-C3N4/ZnO composites were mainly characterized by XRD, UV⁻VIS diffuse reflectance spectroscopy (DRS), N2 adsorption-desorption, FTIR, TEM, and SEM. These nanocomposites' photocatalytic properties were evaluated in methylene blue (MB) dye photodecomposition under UV and sunlight irradiation. Interestingly, compared with ZnO nanorods, g-C3N4/ZnO nanocomposites (x:1, obtained from urea and ZnO nanorods) exhibited weak photocatalytic activity likely due to a "shading effect", while nanocomposites (x:1 CN, made from g-C3N4 and zinc acetate) showed enhanced photocatalytic activity that can be ascribed to the effective establishment of heterojunctions. A kinetics study showed that a maximum reaction rate constant of 0.1862 min-1 can be achieved under solar light illumination, which is three times higher than that of bare ZnO nanorods. The photocatalytic mechanism was revealed by determining reactive species through adding a series of scavengers. It suggested that reactive ∙O2- and h⁺ radicals played a major role in promoting dye photodegradation.

18.
ACS Appl Mater Interfaces ; 11(26): 23112-23117, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252486

RESUMEN

For the first time, SSZ-39 zeolite has been directly prepared using conventional colloidal silica and sodium aluminate instead of using FAU zeolite as the raw material in the alkaline media. The adjustment of the Si/Al ratios in the starting materials to the suitable values is a key factor to prepare the aluminosilicate SSZ-39 zeolite. Various characterizations (for instance, X-ray diffraction, scanning electron microscopy, nitrogen sorption, solid 27Al NMR, and NH3-temperature-programmed desorption) display that the aluminosilicate SSZ-39 zeolite owns high crystallinity, uniform cuboid morphology, large surface area, four-coordinated aluminum species, and strong acidic sites. Inductively coupled plasma analysis shows that the SiO2/Al2O3 ratios of the SSZ-39 products are ranged from 12.8 to 16.8. Considering the special framework of the SSZ-39 zeolite, the yield of this synthesis is not higher than 21.3%. Moreover, the catalytic performance of Cu-SSZ-39 catalyst synthesized from this route is excellent in the selective catalytic reduction of NO x with NH3 (NH3-SCR).

19.
ACS Appl Mater Interfaces ; 10(39): 33214-33220, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30203642

RESUMEN

Modern methodologies for synthesizing zeolites typically involve the employment of costly organic structure-directing agents. Herein, we report the design synthesis of aluminosilicate zeolite with ITE structure using an inexpensive nickel-amine complex (nickel-pentaethylenexamine) as a novel structure-directing agent. Characterizations including X-ray diffraction, scanning electron microscopy, N2 sorption isotherms, and 27Al magic-angle spinning NMR techniques show that the ITE zeolite has high crystallinity, perfect crystals, large surface area, and abundant aluminum species in the framework. More importantly, catalytic tests on the hydrogenation of CO2 into methane show that the Ni-ITE zeolite exhibits better catalytic performance than aluminosilicate-supported and silica-supported nickel catalysts. Obviously, the use of nickel-amine complex offers an alternative and facile way to synthesize aluminosilicate zeolites.

20.
Chem Commun (Camb) ; 52(32): 5520-2, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-26960995

RESUMEN

Structurally interlocked multi-armed carbon with a highly extended surface may be conveniently prepared by the deterministic growth of ZIF-8 on ZnO multiarms and the subsequent pyrolysis, which exhibits excellent stability and methanol corrosion resistance for oxygen reduction application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA