Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 1): 132209, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729471

RESUMEN

Recently, the chitosan (CS)-based composites have attracted increasing attention for controlling and preventing the spread of pathogenic microorganisms. Herein, an amphiphilic copolymer containing epoxy and quaternary ammonium groups (PBGDBr) was synthesized via three common acrylate monomers. The epoxy groups of this copolymer were then crosslinked with the amino groups of CS to synthesize a natural/synthetic (PBGDBr-C) composite to increase the water solubility of CS under alkaline conditions and enhance its antibacterial activity based on chemical contact-type modes. Moreover, silver bromide nanoparticles (AgBr NPs)-decorated PBGDBr-C (AgBr@PBGDBr-C) composite was prepared, which aimed to endow the final AgBr@PBGDBr-C composite with a photodynamic antibacterial mode relying on the formation of Ag/AgBr nanostructures catalyzed by visible light on AgBr NPs. The results showed that the final composite possessed satisfactory bactericidal effects at concentrations higher than 64 and 128 µg/mL against Escherichia coli and Staphylococcus aureus, respectively. Additionally, The L929 cells treated with the final composite retained high cell viability (>80 %) at a concentration of 128 µg/mL, indicating its low toxicity to L929 cells. Overall, our synthetic strategy exploits a multi-modal system that enables chemical-photodynamic synergies to treat infections caused by pathogenic bacteria while delaying the development of bacterial resistance.


Asunto(s)
Antibacterianos , Bromuros , Quitosano , Escherichia coli , Compuestos de Plata , Staphylococcus aureus , Quitosano/química , Quitosano/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bromuros/química , Bromuros/farmacología , Compuestos de Plata/química , Compuestos de Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Polímeros/química , Polímeros/farmacología , Ratones , Cationes/química , Nanopartículas/química , Nanopartículas del Metal/química , Animales , Supervivencia Celular/efectos de los fármacos , Línea Celular
2.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080591

RESUMEN

Thermophysical molding (TPM) treatments can significantly improve the surface properties of thick wood veneer. To understand the effects of TPM treatments on the surface properties of thick veneer, the roughness, contact angles, and chemical changes were determined. The results indicated that the roughness of the thick veneer decreased when the temperature and the duration increased. The contact angles decreased when the temperature increased, resulting in better wettability. X-ray photoelectron spectroscopic (XPS) results provided information about the significant chemical changes in the surface with different TPM temperatures of 160-190 °C and durations of 5-11 min. Increases in temperature and duration increased the C content and decreased the O content during the treatment process. The most significant changes in the thick veneer that resulted from increasing the temperature and the duration were the increase in the C1 component and the decrease in the C2 component. Thus, the oxygen to carbon (O/C) ratio decreased and the ratio of aromatic carbon to aliphatic carbon (C1/C2) notably increased with the increasing TPM temperature. The TPM duration slightly affected the O/C ratio, but it had a stronger linear relation with the C1/C2 ratio. Additionally, the C1/C2 ratio and the O/C ratio had a linear statistical relationship with the initial wettability. These findings could provide useful information for the future utilization of thick veneers treated with TPM.

3.
J Colloid Interface Sci ; 273(2): 626-31, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15082402

RESUMEN

NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA