Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 82(16): 8455-8463, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28731357

RESUMEN

The dual transition metal-visible light photoredox catalysis for the synthesis of quinoline derivatives by using dioxygen as an oxygen source is developed. By using visible light, the direct oxidative cyclization of aromatic enamines with alkynes or alkenes can be achieved at mild conditions with an aid of copper or palladium catalysts, and a variety of multisubstituted quinoline derivatives could be obtained in good to moderate yields under mild reaction conditions.

2.
J Org Chem ; 81(3): 1277-84, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26760053

RESUMEN

A silver-catalyzed decarboxylative addition/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide with primary, secondary, and tertiary carboxylic acids was described. The protocol provides an efficient approach for the synthesis of α-all-carbon quaternary stereocenters amides and isoquinolinediones. It was proposed that the radical generated from the silver-catalyzed decarboxylation was involved in the sequence reaction.

3.
J Org Chem ; 81(24): 12482-12488, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978757

RESUMEN

A facile copper-catalyzed radical aminoarylation of acrylamide with N-fluorobenzenesulfonimide (NFSI) is described. In the presence of copper acetate and 1,10-phenanthroline, a range of isoquinoline-1,3-diones can be constructed in moderate to good yields using NFSI as the amination reagent. Mechanistic studies demonstrated the reaction went through a sequential radical addition and cyclization pathway, which was supported by DFT calculations.

4.
J Org Chem ; 80(11): 5572-80, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25970323

RESUMEN

An efficient catalytic approach for the synthesis of substituted peroxides, alcohols, and ketones through a catalyst-controlled highly selective dioxygenation of olefins has been demonstrated. The reported methods are mild and practical, can be switched by the selection of different catalytic systems, and employ peroxide as an oxidant and a reagent at room temperature.

5.
Phytomedicine ; 128: 155377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503154

RESUMEN

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Asunto(s)
Proliferación Celular , Células Madre Neoplásicas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Antineoplásicos Fitogénicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Evodia/química , Gemcitabina , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA