Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(12): e2308193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37953460

RESUMEN

Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.

2.
Chemistry ; 30(28): e202400012, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38477176

RESUMEN

Intermolecular interactions are critical to the crystallization of biomolecules, yet the precise control of biomolecular crystal growth based on these interactions remains elusive. To understand the connections between the crystallization kinetics and the strength of intermolecular interactions, herein we have employed DNA triangular crystals and modified ones as a versatile tool to investigate how the strength of intermolecular interaction affects crystal growth. Interestingly, we have found that the 2'-O-methylation at sticky ends of the DNA triangle could strengthen its intermolecular interaction, resulting in the accelerated formation of smaller crystals. Conversely, phosphorothioate modification could weaken the sticky-end cohesion and delay the nucleation, resulting in formation of fewer but larger crystals. In addition, these modification effects were consistently observed in the crystallization of a DNA decamer. In one word, our experimental results demonstrate that the strength of intermolecular interaction directly impacts crystal growth. It suggests that 2'-O-methylation and phosphorothioate modification represents a rational strategy for controlling DNA molecules grow into desired crystals and it also facilitates structural determination.


Asunto(s)
Cristalización , ADN , ADN/química , Cinética , Metilación , Conformación de Ácido Nucleico
3.
Environ Sci Technol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888120

RESUMEN

Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.

4.
Environ Res ; 246: 118037, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160964

RESUMEN

Carbon monoxide (CO) has recently been considered an ideal reducing agent to replace NH3 in selective catalytic reduction of NOx (NH3-SCR). This shift is particularly relevant in diesel engines, coal-fired industry, the iron and steel industry, of which generate substantial amounts of CO due to incomplete combustion. Developing high-performance catalysts remain a critical challenge for commercializing this technology. The active sites on catalyst surface play a crucial role in the various microscopic reaction steps of this reaction. This work provides a comprehensive overview and insights into the reaction mechanism of active sites on transition metal- and noble metal-based catalysts, including the types of intermediates and active sites, as well as the conversion mechanism of active molecules or atoms. In addition, the effects of factors such as O2, SO2, and alkali metals, on NO reduction by CO were discussed, and the prospects for catalyst design are proposed. It is hoped to provide theoretical guidance for the rational design of efficient CO selective catalytic denitration materials based on the structure-activity relations.


Asunto(s)
Contaminantes Ambientales , Gases , Catálisis , Monóxido de Carbono , Industrias
5.
Australas J Dermatol ; 65(4): 328-336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419203

RESUMEN

BACKGROUND: Atopic dermatitis (AD) often arises in infancy, and gut microbial dysbiosis is associated with the development of AD. However, less is known about specific changes in early-life gut microbiome associated with AD and AD severity. This study aims to reveal the gut microbial composition and function profiles associated with the severity of AD in infants. METHODS: Sixty-two infants (mean [SD] age, 4.7[1.9] months) with different severities of AD were enrolled and divided into three groups (mild, moderate and severe) according to the Scoring Atopic Dermatitis (SCORAD) index. The profiles of gut microbial composition and function were analysed by sequencing 16S ribosomal RNA amplicons. Quality of life on children and the family was evaluated using published questionnaires. RESULTS: Decreased levels of Clostridium sensu stricto, Collinsella and increased level of Parabacteroides presented in the severe AD group compared with the mild AD group after adjusting potential confounders (p < 0.05). There were strong positive correlations between the Scoring Atopic Dermatitis (SCORAD) index and the relative abundance (RA) of Bacteroides and functional pathways for metabolism of sphingolipids and glycosphingolipids (p < 0.05). The SCORAD index was negatively correlated with the RA of Clostridium sensu stricto (p < 0.05), and was also positively correlated with the index of quality of life on children and the family (p < 0.05). CONCLUSION: Discrepancies in gut microbial composition and functional pathways were observed in infants with mild-to-severe AD. Alterations in butyrate-producing bacteria (Clostridium sensu stricto), sphingolipid-producing bacteria (Parabacteroides, Bacteroides), and related functional pathways were associated with the severity of AD infants.


Asunto(s)
Dermatitis Atópica , Microbioma Gastrointestinal , Calidad de Vida , Índice de Severidad de la Enfermedad , Humanos , Dermatitis Atópica/microbiología , Lactante , Masculino , Femenino , Disbiosis/microbiología , Heces/microbiología
6.
Environ Sci Technol ; 57(49): 20708-20717, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38032314

RESUMEN

Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.


Asunto(s)
Amoníaco , Óxidos , Temperatura , Oxidación-Reducción , Catálisis
7.
J Environ Sci (China) ; 123: 83-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522016

RESUMEN

The iron and steel industry is not only an important foundation of the national economy, but also the largest source of industrial air pollution. Due to the current status of emissions in the iron and steel industry, ultra-low pollutant emission control technology has been researched and developed. Liquid-phase proportion control technology has been developed for magnesian fluxed pellets, and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets (80%) for the first time in China to realize source emission reduction of SO2 and NOx. Based on the characteristics of high NOx concentrations and the coexistence of multiple pollutants in coke oven flue gas, low-NOx combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur. Based on the characteristics of co-existing multiple pollutants in pellet flue gas, selective non-catalytic reduction (SNCR) coupled with ozone oxidation and spray drying adsorption (SDA) was developed, which significantly reduces the operating cost of the system. In the light of the high humidity and high alkalinity in flue gas, filter materials with high humidity resistance and corrosion resistance were manufactured, and an integrated pre-charged bag dust collector device was developed, which realized ultra-low emission of fine particles and reduced filtration resistance and energy consumption in the system. Through source emission reduction, process control and end-treatment technologies, five demonstration projects were built, providing a full set of technical solutions for ultra-low emissions of dust, SO2, NOx, SO3, mercury and other pollutants, and offering technical support for the green development of the iron and steel industry.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Acero , Contaminantes Atmosféricos/análisis , Hierro , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Polvo , Tecnología
8.
Org Biomol Chem ; 20(2): 415-419, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34908092

RESUMEN

A three starting material four component reaction (3SM-4CR) is developed for the synthesis of α,ß-unsaturated ketones and ß-amino ketones in good yields. The reaction employs tetramethylethylenediamine (TMEDA) as a methylene and terminal olefin source, and Selectfluor as a mild oxidant. TMEDA worked as a dual synthon to provide two carbons in this metal-free transformation process. The scope and versatility of the methods have been demonstrated with 23 examples. A Selectfluor-promoted oxidative reaction mechanism is proposed based on the results of the experimental studies.

9.
Stat Med ; 40(9): 2239-2256, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33559203

RESUMEN

Partial least squares, as a dimension reduction technique, has become increasingly important for its ability to deal with problems with a large number of variables. Since noisy variables may weaken estimation performance, the sparse partial least squares (SPLS) technique has been proposed to identify important variables and generate more interpretable results. However, the small sample size of a single dataset limits the performance of conventional methods. An effective solution comes from gathering information from multiple comparable studies. Integrative analysis has essential importance in multidatasets analysis. The main idea is to improve performance by assembling raw data from multiple independent datasets and analyzing them jointly. In this article, we develop an integrative SPLS (iSPLS) method using penalization based on the SPLS technique. The proposed approach consists of two penalties. The first penalty conducts variable selection under the context of integrative analysis. The second penalty, a contrasted penalty, is imposed to encourage the similarity of estimates across datasets and generate more sensible and accurate results. Computational algorithms are developed. Simulation experiments are conducted to compare iSPLS with alternative approaches. The practical utility of iSPLS is shown in the analysis of two TCGA gene expression data.


Asunto(s)
Algoritmos , Simulación por Computador , Humanos , Análisis de los Mínimos Cuadrados , Tamaño de la Muestra
10.
Environ Sci Technol ; 55(10): 6965-6974, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33554595

RESUMEN

ZnS is a promising sorbent in recovering Hg0 from industrial flue gas due to its excellent Hg0 adsorption capacity. However, the internal structure-activity relationship still needs to be further clarified. In this work, ZnS sorbents with different structures were synthesized with the hydrothermal method by tuning the temperature. The samples had significant differences in the crystallinity, morphology, particle size, and sulfur (S) active sites. The results indicated that Hg0 removal performance was determined by the specific surface area and S active sites. ZnS synthesized at low temperatures (80-ZnS and 120-ZnS) had a larger surface area, while the S sites on the high-temperature-synthesized sample (160-ZnS) were more active for Hg0 adsorption. The 160-ZnS sample exhibited a much higher Hg0 adsorption amount per unit surface area. Further characterization revealed that S22- and Sx were the main active sites for Hg0 adsorption. Sx existed in the form of long-chain polysulfur (L-Sx) on 80-ZnS and 120-ZnS, while it exhibited in the form of short-chain polysulfur (S-Sx) on 160-ZnS. L-Sx had negligible adsorption ability, while S-Sx had a high affinity for Hg0. Hg0 can react with S22- and S-Sx, forming α-HgS and ß-HgS, respectively. The new insight in this work can provide theoretical guidance for the design and structure optimization of ZnS, facilitating its practical industrial application.


Asunto(s)
Mercurio , Nanoestructuras , Adsorción , Sulfuros , Compuestos de Zinc
11.
J Environ Sci (China) ; 109: 36-44, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607672

RESUMEN

In this study, the thermal stability of a ferric oxide catalyst for mercury oxidation was found to be considerably promoted by doping with La2O3. The catalysts doped with La2O3 maintained a higher surface area when subjected to high-temperature calcination, with lower average pore size and a narrower pore size distribution. X-ray diffraction (XRD) results revealed that La2O3 doping hinders the growth of catalyst particles and crystallization of the material at high temperatures. Both NO and SO2 inhibited Hg0 oxidation over the La2O3/Fe2O3 catalyst. Fourier transform infrared (FTIR) spectra revealed that SO2 reacts with O2 over the catalysts to form several species that are inert for mercury oxidation, such as SO42-, HSO4-, or other related species; these inert species cover the catalyst surface and consequently decrease Hg0 oxidation capacity. In addition, NO or SO2 competed with Hg0 for active sites on the La2O3/Fe2O3 catalyst and hindered the adsorption of mercury, thereby inhibiting subsequent Hg0 oxidation. Hg0 oxidation on the La2O3/Fe2O3 catalyst mainly followed the Eley-Rideal mechanism. Moreover, the inhibition effects of NO and SO2 were at least partially reversible, and the catalytic activity was temporarily restored after eliminating NO or SO2.


Asunto(s)
Mercurio , Catálisis , Lantano , Oxidación-Reducción , Óxidos
12.
J Environ Sci (China) ; 104: 253-263, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33985728

RESUMEN

With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. Considering the increase of the proportion of semi-dry desulfurization technology in the desulfurization process, several semi-dry desulphurization technologies such as flue gas circulating fluidized bed (CFB), dense flow absorber (DFA) and spray drying absorption (SDA) are briefly summarized. Moreover, a method for simultaneous treatment of SO2 and NOx in sintering/pelletizing flue gas by O3 oxidation combined with semi-dry method is introduced. Meantime, the effects of key parameters such as O3/NO molar ratio, CaSO3, SO2, reaction temperature, Ca/(S+2N) molar ratio, droplet size and approach to adiabatic saturation temperature (AAST) on denitrification and desulfurization are analyzed. Furthermore, the reaction mechanism of denitrification and desulfurization is further elucidated. Finally, the advantages and development prospects of the new technology are proposed.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Azufre , Desnitrificación , Hierro , Oxidación-Reducción , Temperatura
13.
J Environ Sci (China) ; 96: 64-71, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32819700

RESUMEN

Based on the demand of sintering/pelleting flue gas ultra-low emission, a semi-dry method using a spray dryer absorber (SDA) combined with O3 oxidation was proposed for simultaneous removal of SO2 and NO. Effects of O3 injection site, O3/NO molar ratio, and spray tower temperature on the removal efficiencies were investigated. It was revealed that both desulfurization and denitrification efficiencies could reach to 85% under the conditions of setting O3 injection site inside of tower, O3/NO molar ratio 1.8, spray tower temperature 85°C, Ca/(S + 2 N) molar ratio 2.5 and slurry flow rate 300 mL/hr. CaSO3/Ca(OH)2 mixture slurry was used as absorbent to simulate operating conditions in iron and steel industry. The result shows that the addition of CaSO3 weakens both removal efficiencies. In addition, the reaction mechanism of simultaneous removal of SO2 and NO using SDA combined with O3 oxidation was proposed.


Asunto(s)
Hierro , Dióxido de Azufre , Oxidación-Reducción , Temperatura
14.
J Environ Sci (China) ; 98: 205-214, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33097153

RESUMEN

To clarify the effect of coking dust, sintering dust and fly ash on the activity of activated carbon for various industrial flue gas desulfurization and denitrification, the coupling mechanism of the mixed activated carbon and dust was investigated to provide theoretical reference for the stable operation. The results show that coking dust had 34% desulfurization efficiency and 10% denitrification efficiency; correspondingly, sintering dust and fly ash had no obvious desulfurization and denitrification activities. For the mixture of activated carbon and dust, the coking dust reduced the desulfurization and denitrification efficiencies by blocking the pores of activated carbon, and its inhibiting effect on activated carbon was larger than its own desulfurization and denitrification activity. The sintering dust also reduced the desulfurization efficiency on the activated carbon while enhancing the denitrification efficiency. Fly ash blocked the pores of activated carbon and reduced its reaction activity. The reaction activity of coking dust mainly came from the surface functional groups, similar to that of activated carbon. The reaction activity of sintering dust mainly came from the oxidative property of Fe2O3, which oxidized NO to NO2 and promoted the fast selectively catalytic reduction (SCR) of NO to form N2. Sintering dust was activated by the joint action of activated carbon, and both had a coupling function. Sintering dust enhanced the adsorption and oxidation of NO, and activated carbon further promoted the reduction of NOx by NH3; thus, the denitrification efficiency increased by 5%-7% on the activated carbon.


Asunto(s)
Carbón Orgánico , Polvo , Adsorción , Desnitrificación , Dióxido de Azufre
15.
J Environ Sci (China) ; 90: 138-145, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081310

RESUMEN

In this study, the thermal stability of a Fe2O3 catalyst for mercury oxidation was significantly improved by doping with Al2O3. After 1 hr, the catalyst doped with 10 wt.% Al2O3 still exhibited a mercury conversion efficiency of 70.9%, while the undoped sample even lost its catalytic activity. Doping with Al2O3 retarded the collapse of the catalyst mesoporous structure during high-temperature calcination, and the doped samples maintained a higher specific surface area, smaller pore size, and narrower pore size distribution. Transmission electron microscope images revealed that after calcination at 350°C, the average size of the catalyst grains in Fe2O3 was 23.4 nm; however, the corresponding values for 1%Al2O3/Fe2O3, 3%Al2O3/Fe2O3, and 10%Al2O3/Fe2O3 were only 13.3, 7.1, and 4.7 nm, respectively. Results obtained from X-ray diffraction and thermogravimetry coupled with differential scanning calorimetry confirmed that doping with Al2O3 also retards the crystallization of the catalysts at high temperature, constraining catalyst grains to a smaller size.


Asunto(s)
Óxido de Aluminio , Doping en los Deportes , Mercurio , Catálisis , Oxidación-Reducción
16.
J Environ Sci (China) ; 90: 119-137, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32081309

RESUMEN

Based on density functional theory (DFT) and basic structure models, the chemical reactions on the surface of vanadium-titanium based selective catalytic reduction (SCR) denitrification catalysts were summarized. Reasonable structural models (non-periodic and periodic structural models) are the basis of density functional calculations. A periodic structure model was more appropriate to represent the catalyst surface, and its theoretical calculation results were more comparable with the experimental results than a non-periodic model. It is generally believed that the SCR mechanism where NH3 and NO react to produce N2 and H2O follows an Eley-Rideal type mechanism. NH2NO was found to be an important intermediate in the SCR reaction, with multiple production routes. Simultaneously, the effects of H2O, SO2 and metal on SCR catalysts were also summarized.


Asunto(s)
Modelos Químicos , Titanio , Vanadio , Amoníaco , Catálisis , Teoría Funcional de la Densidad
17.
Genet Epidemiol ; 42(8): 796-811, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30302823

RESUMEN

Clustering has been widely conducted in the analysis of gene expression data. For complex diseases, it has played an important role in identifying unknown functions of genes, serving as the basis of other analysis, and others. A common limitation of most existing clustering approaches is to assume that genes are separated into disjoint clusters. As genes often have multiple functions and thus can belong to more than one functional cluster, the disjoint clustering results can be unsatisfactory. In addition, due to the small sample sizes of genetic profiling studies and other factors, there may not be sufficient evidence to confirm the specific functions of some genes and cluster them definitively into disjoint clusters. In this study, we develop an effective overlapping clustering approach, which takes account into the multiplicity of gene functions and lack of certainty in practical analysis. A penalized weighted normalized cut (PWNCut) criterion is proposed based on the NCut technique and an L 2 norm constraint. It outperforms multiple competitors in simulation. The analysis of the cancer genome atlas (TCGA) data on breast cancer and cervical cancer leads to biologically sensible findings which differ from those using the alternatives. To facilitate implementation, we develop the function pwncut in the R package NCutYX.


Asunto(s)
Algoritmos , Regulación de la Expresión Génica , Neoplasias de la Mama/genética , Análisis por Conglomerados , Simulación por Computador , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Modelos Genéticos
18.
J Environ Sci (China) ; 72: 25-32, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30244748

RESUMEN

Measurement of the SO3 concentration in flue gas is important to estimate the acid dew point and to control corrosion of downstream equipment. SO3 measurement is a difficult question since SO3 is a highly reactive gas, and its concentration is generally two orders of magnitude lower than the SO2 concentration. The SO3 concentration can be measured online by the isopropanol absorption method; however, the reliability of the test results is relatively low. This work aims to find the error sources and to evaluate the extent of influence of each factor on the measurement results. The test results from a SO3 analyzer showed that the measuring errors are mainly caused by the gas-liquid flow ratio, SO2 oxidation, and the side reactions of SO3. The error in the gas sampling rate is generally less than 13%. The isopropanol solution flow rate decreases 3% to 30% due to the volatilization of isopropanol, and accordingly, this will increase the apparent SO3 concentration. The amount of SO2 oxidation is linearly related to the SO2 concentration. The side reactions of SO3 reduce the selectivity of SO42- to nearly 73%. As sampling temperature increases from 180 to 300°C, the selectivity of SO42- decreases from 73% to 50%. The presence of H2O in the sample gas helps to reduce the measurement error by inhibiting the volatilization of the isopropanol and weakening side reactions. A formula was established to modify the displayed value, and the measurement error was reduced from 25%-54% to less than 15%.


Asunto(s)
2-Propanol/química , Modelos Químicos , Óxidos de Azufre/análisis , Corrosión , Oxidación-Reducción
19.
J Environ Sci (China) ; 54: 239-245, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28391935

RESUMEN

The activated carbon injection-circulating fluidized bed (ACI-CFB)-bag filter coupling technique was studied in an iron ore sintering plant. For comparison, the removal efficiencies under the conditions without or with ACI technology were both evaluated. It was found that the polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) removal efficiency for total international toxic equivalence quantity (I-TEQ) concentration was improved from 91.61% to 97.36% when ACI was employed, revealing that ACI was very conducive to further controlling the PCDD/F emissions. Detailed congener distributions of PCDD/Fs in the gas-phase and particle-phase of the Inlet and Outlet samples were determined. Additionally, the PCDD/F distribution for the Fly ash-with ACI sample of was also studied.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dibenzofuranos Policlorados/análisis , Incineración , Metalurgia , Dibenzodioxinas Policloradas/análisis , Monitoreo del Ambiente , Hierro
20.
J Environ Sci (China) ; 43: 128-135, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27155417

RESUMEN

Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption.


Asunto(s)
Carbón Orgánico/química , Clorobencenos/química , Modelos Químicos , Óxidos de Nitrógeno/análisis , Dióxido de Azufre/química , Adsorción , Contaminantes Atmosféricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA