Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Death Dis ; 15(9): 699, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349432

RESUMEN

The increasing mortality rate of pancreatic cancer globally necessitates the urgent identification for novel therapeutic targets. This study investigated the expression, functions, and mechanistic insight of G protein inhibitory subunit 3 (Gαi3) in pancreatic cancer. Bioinformatics analyses reveal that Gαi3 is overexpressed in human pancreatic cancer, correlating with poor prognosis, higher tumor grade, and advanced classification. Elevated Gαi3 levels are also confirmed in human pancreatic cancer tissues and primary/immortalized cancer cells. Gαi3 shRNA or knockout (KO) significantly reduced cell viability, proliferation, cell cycle progression, and mobility in primary/immortalized pancreatic cancer cells. Conversely, Gαi3 overexpression enhanced pancreatic cancer cell growth. RNA-sequencing and bioinformatics analyses of Gαi3-depleted cells indicated Gαi3's role in modulating the Akt-mTOR and PKA-Hippo-YAP pathways. Akt-S6 phosphorylation was decreased in Gαi3-depleted cells, but was increased with Gαi3 overexpression. Additionally, Gαi3 depletion elevated PKA activity and activated the Hippo pathway kinase LATS1/2, leading to YAP/TAZ inactivation, while Gαi3 overexpression exerted the opposite effects. There is an increased binding between Gαi3 promoter and the transcription factor TCF7L2 in pancreatic cancer tissues and cells. Gαi3 expression was significantly decreased following TCF7L2 silencing, but increased with TCF7L2 overexpression. In vivo, intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus significantly inhibited subcutaneous pancreatic cancer xenografts growth in nude mice. A significant growth reduction was also observed in xenografts from Gαi3 knockout pancreatic cancer cells. Akt-mTOR inactivation and increased PKA activity coupled with YAP/TAZ inactivation were also detected in xenograft tumors upon Gαi3 depletion. Furthermore, bioinformatic analysis and multiplex immunohistochemistry (mIHC) staining on pancreatic cancer tissue microarrays showed a reduced proportion of M1-type macrophages and an increase in PD-L1 positive cells in Gαi3-high pancreatic cancer tissues. Collectively, these findings highlight Gαi3's critical role in promoting pancreatic cancer cell growth, potentially through the modulation of the Akt-mTOR and PKA-Hippo-YAP pathways and its influence on the immune landscape.


Asunto(s)
Proliferación Celular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ratones Desnudos , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino
2.
Cell Death Discov ; 9(1): 382, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37852974

RESUMEN

Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC patients often have poor prognosis demanding urgent identification of novel biomarkers and potential therapeutic targets. KCNAB2 (regulatory beta subunit2 of voltage-gated potassium channel), encoding aldosterone reductase, plays a pivotal role in regulating potassium channel activity. In this research, we tested the expression of KCNAB2 as well as its potential functions in human NSCLC. Bioinformatics analysis shows that expression of KCNAB2 mRNA is significantly downregulated in human NSCLC, correlating with poor overall survival. In addition, decreased KCNAB2 expression was detected in different NSCLC cell lines and local human NSCLC tissues. Exogenous overexpression of KCNAB2 potently suppressed growth, proliferation and motility of established human NSCLC cells and promoted NSCLC cells apoptosis. In contrast, CRISPR/Cas9-induced KCNAB2 knockout further promoted the malignant biological behaviors of NSCLC cells. Protein chip analysis in the KCNAB2-overexpressed NSCLC cells revealed that KCNAB2 plays a possible role in AKT-mTOR cascade activation. Indeed, AKT-mTOR signaling activation was potently inhibited following KCNAB2 overexpression in NSCLC cells. It was however augmented by KCNAB2 knockout. In vivo, the growth of subcutaneous KCNAB2-overexpressed A549 xenografts was significantly inhibited. Collectively, KCNAB2 could be a novel effective gene for prognosis prediction of NSCLC. Targeting KCNAB2 may lead to the development of advanced therapies.

3.
Cell Death Dis ; 14(2): 157, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828810

RESUMEN

Pancreatic cancer has an extremely poor prognosis. Here we examined expression, potential functions and underlying mechanisms of MXRA5 (matrix remodeling associated 5) in pancreatic cancer. Bioinformatics studies revealed that MXRA5 transcripts are significantly elevated in pancreatic cancer tissues, correlating with the poor overall survival, high T-stage, N1 and pathologic stage of the patients. MXRA5 mRNA and protein expression is significantly elevated in microarray pancreatic cancer tissues and different pancreatic cancer cells. In primary and immortalized (BxPC-3 and PANC-1 lines) pancreatic cancer cells, shRNA-induced MXRA5 silencing or CRISPR/Cas9-mediated MXRA5 knockout suppressed cell survival, proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while provoking cell apoptosis. Conversely, forced overexpression of MXRA5 further promoted pancreatic cancer cell progression and EMT. Bioinformatics studies and the protein chip analyses revealed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in MXRA5-overexpressed primary pancreatic cancer cells were enriched in the PI3K-Akt-mTOR cascade. Indeed, Akt-mTOR activation in primary human pancreatic cancer cells was inhibited by MXRA5 shRNA or knockout, but was augmented following MXRA5 overexpression. In vivo, the growth of MXRA5 KO PANC-1 xenografts was largely inhibited in nude mice. Moreover, intratumoral injection of adeno-associated virus-packed MXRA5 shRNA potently inhibited primary pancreatic cancer cell growth in nude mice. Akt-mTOR activation was also largely inhibited in the MXRA5-depleted pancreatic cancer xenografts. Contrarily MXRA5 overexpression promoted primary pancreatic cancer cell growth in nude mice. Together, overexpressed MXRA5 is important for pancreatic cancer cell growth possibly through promoting EMT and Akt-mTOR activation. MXRA5 could be a potential therapeutic oncotarget for pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Neoplasias Pancreáticas/patología , ARN Interferente Pequeño/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal , Neoplasias Pancreáticas
4.
Front Oncol ; 12: 972744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982956

RESUMEN

Background: Liver cancer is among the leading causes of death related to cancer around the world. The most frequent type of human liver cancer is hepatocellular carcinoma (HCC). Fatty acid (FA) metabolism is an emerging hallmark that plays a promoting role in numerous malignancies. This study aimed to discover a FA metabolism-related risk signature and formulate a better model for HCC patients' prognosis prediction. Methods: We collected mRNA expression data and clinical parameters of patients with HCC using the TCGA databases, and the differential FA metabolism-related genes were explored. To create a risk prognostic model, we carried out the consensus clustering as well as univariate and multivariate Cox regression analyses. 16 genes were used to establish a prognostic model, which was then validated in the ICGC dataset. The accuracy of the model was performed using receiver operating characteristic (ROC) analyses, decision curve analysis (DCA) and nomogram. The immune cell infiltration level of risk genes was evaluated with single-sample GSEA (ssGSEA) algorithm. To reflect the response to immunotherapy, immunophenoscore (IPS) was obtained from TCGA-LIHC. Then, the expression of the candidate risk genes (p < 0.05) was validated by qRT-PCR, Western blotting and single-cell transcriptomics. Cellular function assays were performed to revealed the biological function of HAVCR1. Results: According to the TCGA-LIHC cohort analysis, the majority of the FA metabolism-related genes were expressed differentially in the HCC and normal tissues. The prognosis of patients with high-risk scores was observed to be worse. Multivariate COX regression analysis confirmed that the model can be employed as an independent prognosis factor for HCC patients. Furthermore, ssGSEA analysis revealed a link between the model and the levels of immune cell infiltration. Our model scoring mechanism also provides a high predictive value in HCC patients receiving anti-PDL1 immunotherapy. One of the FA metabolism-related genes, HAVCR1, displays a significant differential expression between normal and HCC cell lines. Hepatocellular carcinoma cells (Huh7, and HepG2) proliferation, motility, and invasion were all remarkably inhibited by HAVCR1 siRNA. Conclusion: Our study identified a novel FA metabolism-related prognostic model, revealing a better potential treatment and prevention strategy for HCC.

5.
Oxid Med Cell Longev ; 2022: 8550817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39282148

RESUMEN

The high incidence and mortality of cervical cancer (CC) require an urgent need for exploring novel valuable therapeutics. Triptonide (TN) is a small molecule monomer extracted from the Chinese herb Tripterygium wilfordii Hook. Our results showed that TN, at only nanomolar concentrations, strongly inhibited growth, colony formation, proliferation, migration, and invasion of established and primary human cervical cancer cells. TN induced apoptosis and cell cycle arrest in cervical cancer cells. Moreover, cervical cancer cell in vitro migration and invasion were suppressed by TN. It was however noncytotoxic and proapoptotic to normal cervical epithelial cells and human skin fibroblast cells. Gene set enrichment analysis (GSEA) of RNA sequencing data of differentially expressed genes (DEGs) in TN-treated cervical cancer cells implied that DEGs were enriched in the receptor tyrosine kinase (RTK) signaling and PI3K-Akt-mTOR cascade. In cervical cancer cells, RTKs, including EGFR and PDGFRα, were significantly downregulated and Akt-mTOR activation was largely inhibited after TN treatment. In vivo, oral administration of TN significantly inhibited subcutaneous cervical cancer xenograft growth in nude mice. EGFR and PDGFRα downregulation as well as Akt-mTOR inactivation was detected in TN-treated HeLa xenograft tumor tissues. Thus, TN inhibits human cervical cancer cell growth in vitro and in vivo. Its anticervical cancer activity was associated with RTK downregulation and Akt-mTOR inactivation.

6.
Cell Death Dis ; 12(10): 918, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620839

RESUMEN

Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Adulto , Anciano , Animales , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
7.
PLoS One ; 15(5): e0233629, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469987

RESUMEN

BACKGROUND: The expression of the L-type amino acid transporter 1 (LAT1) plays a significant role in tumor progression. However, it remains unclear whether high LAT1 expression correlates with poor prognosis of solid tumor patients. Here, we conducted a meta-analysis to assess the potential of LAT1 in predicting the prognosis of tumor patients. METHODS AND FINDINGS: A total of 4,579 cases were analyzed from 35 qualified studies. In patients with solid tumors, elevated expression of LAT1 is associated with poor prognosis (overall survival [OS]: pooled hazard ratio (HR) = 1.848, 95% confidence interval (CI) = 1.620-2.108, P < 0.001; disease free survival [DFS]: pooled HR = 1.923, 95% CI = 1.585-2.333, P < 0.001; progression free survival [PFS]: pooled HR = 1.345, 95% CI = 1.133-1.597, P = 0.001). Furthermore, in subgroup analysis, we found an association between high LAT1 expression and poor OS in non-small cell lung cancer (HR = 1.554, 95% CI = 1.345-1.794, P < 0.001), pancreatic cancer (HR = 2.052, 95% CI = 1.613-2.724, P < 0.001) and biliary tract cancer (HR = 2.253, 95% CI = 1.562-3.227, P < 0.001). CONCLUSION: The results of this meta-analysis indicate the reliability and potential of using LAT1 expression as a predictive biomarker in solid cancers prior to treatment. However, further studies with larger sample sizes would be beneficial for fully evaluating the predictive value of LAT1 expression for clinical applications.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/análisis , Neoplasias/diagnóstico , Neoplasias del Sistema Biliar/diagnóstico , Biomarcadores de Tumor/análisis , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA