Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34157308

RESUMEN

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Asunto(s)
Replicación del ADN/genética , Células Eucariotas/fisiología , Genoma Humano/genética , Línea Celular Tumoral , Cromatina/genética , Momento de Replicación del ADN/genética , Genoma Fúngico/genética , Estudio de Asociación del Genoma Completo/métodos , Células HeLa , Humanos , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción/fisiología
2.
Pharmacol Rev ; 76(5): 828-845, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914468

RESUMEN

Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.


Asunto(s)
Conotoxinas , Canales de Sodio Activados por Voltaje , Conotoxinas/farmacología , Conotoxinas/química , Humanos , Animales , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Secuencia de Aminoácidos
3.
Opt Express ; 32(12): 21870-21886, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859531

RESUMEN

In contrast to the passive remote sensing of global CO2 column concentrations (XCO2), active remote sensing with a lidar enables continuous XCO2 measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO2 for the first time. In this study, special methods have been developed for ACDL data processing and XCO2 retrieval. The CO2 measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO2, are presented. The results of XCO2 measurements over the period from 1st June 2022 to 30th June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.

4.
Inorg Chem ; 63(29): 13295-13303, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38982625

RESUMEN

Targeting selective CO2 photoreduction into CH4 remains a challenge due to the sluggish reaction kinetics and poor hydrogenation ability of the unstable intermediate. Here, the active Pt2+ sites were photodeposited on the SrTiO3 photocatalyst, which was well demonstrated to manipulate the CH4 product selectivity. The results showed that SrTiO3 mainly yielded the CO (6.98 µmol g-1) product with poor CH4 (0.17 µmol g-1). With the Pt2+ modification, 100% CH4 selectivity could be obtained with an optimized yield rate of 8.07 µmol g-1. The prominent enhancement resulted from the following roles: (1) the strong electronic interaction between the Pt2+ cocatalyst and SrTiO3 could prompt efficient separation of the photoelectron-hole pairs. (2) The Pt2+ sites were active to capture and activate inert CO2 into HCO3- and CO32- species and allowed fast *COOH formation with the lowered reaction barrier. (3) Compared with SrTiO3, the formed *CO species could be captured tightly on the Pt2+ cocatalyst surface for generating the *CH2 intermediate by the following electron-proton coupling reaction, thus leading to the CH4 product with 100% selectivity.

5.
Lipids Health Dis ; 23(1): 95, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566209

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Metabolismo de los Lípidos
6.
Appl Opt ; 63(9): 2121-2131, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568563

RESUMEN

An integrated path differential absorption (IPDA) lidar can accurately measure regional C O 2 weighted column average concentrations (X C O 2), which are crucial for understanding the carbon cycle in climate change studies. To verify the performance and data inversion methods of space-borne IPDA lidar, in July 2021, we conducted an airborne lidar validation experiment in Dunhuang, Gansu Province, China. An aircraft was equipped with a lidar system developed to measure X C O 2 and an in situ greenhouse gas analyzer (GGA). To minimize measurement errors, energy monitoring was optimized. The system bias error of the DAOD was determined by changing the laser output mode from the off/on to the on/on mode. The X C O 2 inversion results obtained through comparing the schemes of averaging signals before "log (logarithm)" and averaging after "log" indicate that the former performs better. The IPDA lidar measured X C O 2 over the validation site at 405.57 ppm, and both the IPDA lidar and GGA measured sudden changes in the C O 2 concentration. The assimilation data showed a similar trend according to the altitude to the data measured by the in situ instrument. A comparison of the mean X C O 2 derived from the GGA results and assimilation data with the IPDA lidar measurements showed biases of 0.80 and 1.12 ppm, respectively.

7.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786593

RESUMEN

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Asunto(s)
Encéfalo , Conotoxinas , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Conotoxinas/farmacología , Conotoxinas/química , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Antagonistas Nicotínicos/farmacología , Colorantes Fluorescentes , Ratas Sprague-Dawley , Masculino , Femenino
8.
J Environ Manage ; 367: 122061, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098076

RESUMEN

The anaerobic biological treatment of landfill leachate frequently encounters the souring problems because of the high concentration of organic in landfill leachate. Nonetheless, the performance of anaerobic membrane bioreactor (AnMBR) is commendable in terms of removal of organic compounds. Hence, this study explored the effect of organic concentration and hydraulic retention time(HRT) on the removal performance of actual landfill leachate, additionally, carbon conversion through carbon mass balance analysis was analyzed, in order to determine the optimal treatment potential of AnMBR in treating landfill leachate. For HRT values between 14.5 h and 34.6 h, and the influent COD (Chemical Oxygen Demand) range of 12,773.33-15706.67 mg/L, AnMBR could efficiently treat landfill leachate. As HRT was fixed at 14.5 h and influent COD was around 12,206.7-15,373.33 mg/L, AnMBR achieved a maximum organic removal rate of 18.22 ± 0.51 kg COD/(m3∙d) with methane yield of 0.24 ± 0.01 m3 CH4/kg COD and methane content of 88.26%. Based on carbon mass balance, increasing COD concentration in the influent (less than 16,000 mg/L) boosted the conversion of organic compounds (45.19 ± 4.24%) into CH4; while decreasing HRT (more than 27.0 h) also promoted the conversion of organic compounds into CH4 (38.36-60.93%) resulting in a decreased TOC (Total Organic Carbon) loss by 2.02-7.19% with outflow. AnMBR may efficiently produce methane while treating landfill leachate by assessing the random forest model (RF) and adjusting the balance between HRT and influent COD concentration.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Metano , Contaminantes Químicos del Agua , Metano/metabolismo , Anaerobiosis , Eliminación de Residuos Líquidos/métodos
9.
Genome Res ; 30(2): 227-238, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907193

RESUMEN

The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof of principle to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that is in spatial contact more frequently than expected and that is regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect "transcriptional niche" in the nucleus. We develop a new algorithm, MOCHI, to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and show distinct functional properties. Through integrative analysis, this work shows the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.


Asunto(s)
Cromatina/genética , Epistasis Genética/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Algoritmos , Análisis por Conglomerados , Genoma Humano/genética , Humanos , Unión Proteica/genética , Factores de Transcripción/genética
10.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37748043

RESUMEN

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Ratas , Animales , Receptores Nicotínicos/química , Conotoxinas/química , Conotoxinas/farmacología , Caracol Conus/química , Péptidos/química , Ésteres
11.
Mar Drugs ; 21(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233480

RESUMEN

α4/6-conotoxin TxID, which was identified from Conus textile, simultaneously blocks rat (r) α3ß4 and rα6/α3ß4 nicotinic acetylcholine receptors (nAChRs) with IC50 values of 3.6 nM and 33.9 nM, respectively. In order to identify the effects of loop2 size on the potency of TxID, alanine (Ala) insertion and truncation mutants were designed and synthesized in this study. An electrophysiological assay was used to evaluate the activity of TxID and its loop2-modified mutants. The results showed that the inhibition of 4/7-subfamily mutants [+9A]TxID, [+10A]TxID, [+14A]TxID, and all the 4/5-subfamily mutants against rα3ß4 and rα6/α3ß4 nAChRs decreased. Overall, ala-insertion or truncation of the 9th, 10th, and 11th amino acid results in a loss of inhibition and the truncation of loop2 has more obvious impacts on its functions. Our findings have strengthened the understanding of α-conotoxin, provided guidance for further modifications, and offered a perspective for future studies on the molecular mechanism of the interaction between α-conotoxins and nAChRs.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Ratas , Animales , Conotoxinas/química , Caracol Conus/química , Receptores Nicotínicos/metabolismo , Alanina , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
12.
Mar Drugs ; 21(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37367650

RESUMEN

Conotoxins are a class of disulfide-rich peptides found in the venom of cone snails, which have attracted considerable attention in recent years due to their potent activity on ion channels and potential for therapeutics. Among them, α-conotoxin RgIA, a 13-residue peptide, has shown great promise as a potent inhibitor of α9α10 nAChRs for pain management. In this study, we investigated the effect of substituting the naturally occurring L-type arginine at position 11 of the RgIA sequence with its D-type amino acid. Our results indicate that this substitution abrogated the ability of RgIA to block α9α10 nAChRs, but instead endowed the peptide with the ability to block α7 nAChR activity. Structural analyses revealed that this substitution induced significant alteration of the secondary structure of RgIA[11r], which consequently affected its activity. Our findings underscore the potential of D-type amino acid substitution as a promising strategy for designing novel conotoxin-based ligands targeting different types of nAChRs.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptores Nicotínicos/metabolismo , Conotoxinas/química , Péptidos/farmacología , Péptidos/metabolismo , Arginina/farmacología , Antagonistas Nicotínicos/química
13.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298363

RESUMEN

Cone snails, as a type of marine organism, have rich species diversity. Traditionally, classifications of cone snails were based mostly on radula, shell, and anatomical characters. Because of these phenotypic features' high population variability and propensity for local adaptation and convergence, identifying species can be difficult and occasionally inaccurate. In addition, mitochondrial genomes contain high phylogenetic information, so complete mitogenomes have been increasingly employed for inferring molecular phylogeny. To enrich the mitogenomic database of cone snails (Caenogastropoda: Conidae), mitogenomes of four Conus species, i.e., C. imperialis (15,505 bp), C. literatus (15,569 bp), C. virgo (15,594 bp), and C. marmoreus (15,579 bp), were characterized and compared. All 4 of these mitogenomes included 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and non-coding regions. All the Protein Codon Genes (PCGs) of both newly sequenced mitogenomes used TAA or TAG as a terminal codon. Most PCGs used conventional start codon ATG, but an alternative initiation codon GTG was detected in a gene (NADH dehydrogenase subunit 4 (nad4)) of C. imperialis. In addition, the phylogenetic relationships were reconstructed among 20 Conus species on the basis of PCGs, COX1, and the complete mitogenome using both Bayesian Inference (BI) and Maximum Likelihood (ML). The phylogenetic results supported that C. litteratus, C. quercinus, and C. virgo were clustered together as a sister group (PP = 1, BS = 99), but they did not support the phylogenetic relation of C. imperialis and C. tribblei (PP = 0.79, BS = 50). In addition, our study established that PCGs and complete mitogenome are the two useful markers for phylogenetic inference of Conus species. These results enriched the data of the cone snail's mitochondrion in the South China Sea and provided a reliable basis for the interpretation of the phylogenetic relationship of the cone snail based on the mitochondrial genome.


Asunto(s)
Caracol Conus , Genoma Mitocondrial , Animales , Caracol Conus/genética , Filogenia , ARN Ribosómico/genética , Teorema de Bayes , Codón
14.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239959

RESUMEN

Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3ß2ß3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3ß2ß3 nAChR but also human α6/α3ß4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and ß4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3ß4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]ß4L107V, V115I was 22.5 µM, a 42-fold decrease in potency compared to the native hα6/α3ß4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human ß4 subunit, together, were found to determine the species differences in the α6/α3ß4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.


Asunto(s)
Conotoxinas , Caracol Conus , Receptores Nicotínicos , Ratas , Humanos , Animales , Especificidad de la Especie , Conotoxinas/farmacología , Conotoxinas/química , Caracol Conus/química , Reacción en Cadena de la Polimerasa , Receptores Nicotínicos/metabolismo
15.
Molecules ; 28(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37110612

RESUMEN

In the chemical synthesis of conotoxins with multiple disulfide bonds, the oxidative folding process can result in diverse disulfide bond connectivities, which presents a challenge for determining the natural disulfide bond connectivities and leads to significant structural differences in the synthesized toxins. Here, we focus on KIIIA, a µ-conotoxin that has high potency in inhibiting Nav1.2 and Nav1.4. The non-natural connectivity pattern (C1-C9, C2-C15, C4-C16) of KIIIA exhibits the highest activity. In this study, we report an optimized Fmoc solid-phase synthesis of KIIIA using various strategies. Our results indicate that free random oxidation is the simplest method for peptides containing triple disulfide bonds, resulting in high yields and a simplified process. Alternatively, the semi-selective strategy utilizing Trt/Acm groups can also produce the ideal isomer, albeit with a lower yield. Furthermore, we performed distributed oxidation using three different protecting groups, optimizing their positions and cleavage order. Our results showed that prioritizing the cleavage of the Mob group over Acm may result in disulfide bond scrambling and the formation of new isomers. We also tested the activity of synthesized isomers on Nav1.4. These findings provide valuable guidance for the synthesis of multi-disulfide-bonded peptides in future studies.


Asunto(s)
Conotoxinas , Conotoxinas/química , Péptidos/química , Isomerismo , Oxidación-Reducción , Disulfuros/química
16.
Opt Express ; 30(20): 35146-35162, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258473

RESUMEN

The spaceborne IPDA LIDAR has the potential to measure the global atmosphere CO2 column concentrations with high accuracy. For this kind of LIDAR, system calibration experiments in the laboratory are of high importance. In this study, a specially-customized CO2 absorption cell is employed to simulate the CO2 column absorption of the spaceborne platform. Then calibration experiments are constructed for the receiving system and the entire LIDAR system. The absorption of several different XCO2 concentrations from 400 to 415 ppm in the atmosphere is equivalent to that of the absorption cell charged with different pressures of pure CO2. Under the zero pressure of the absorption cell, the calculated equivalent column average concentration (XCO2) is 12.53 ppm, which acts as system bias. In the calibration experiments, the absolute errors are all less than 1 ppm. And the standard deviations (STDs) are less than 1.1 ppm (148-shot averaging) and 0.8 ppm (296-shot averaging) for receiving system and less than 1.2 ppm and 0.9 ppm for the IPDA LIDAR system. All the results of different average times are close to each other and less than 1 ppm, which proves the high accuracy of the IPDA LIDAR system. In addition, the XCO2 concentrations Allan deviation of 0.25 ppm and 0.35 ppm at 100 s shows that the receiving system and IPDA LIDAR system function with long-term stability. Using a CO2 absorption cell as a standard calibration device in the laboratory validates the measurement accuracy and stability of the spaceborne IPDA LIDAR prototype. Furthermore, the proposed absorption cell may serve as a standard calibration device for related atmosphere trace gases sounding research.

17.
Diabetes Metab Res Rev ; 38(8): e3570, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35938229

RESUMEN

AIMS: The study aimed to develop a novel noninvasive model to detect advanced fibrosis based on routinely available clinical and laboratory tests. MATERIALS AND METHODS: A total of 309 patients who underwent liver biopsy were randomly divided into the estimation group (n = 201) and validation group (n = 108). The model was developed using multiple regression analysis in the estimation group and further verified in the validation group. Diagnostic accuracy was evaluated using the receiver operating characteristic (ROC) curve. RESULTS: The model was named NAFLD Fibrosis Index (NFI): -10.844 + 0.046 × age - 0.01 × platelet count + 0.19 × 2h postprandial plasma glucose (PG) + 0.294 × conjugated bilirubin - 0.015 × ALT + 0.039 × AST + 0.109 × total iron binding capacity -0.033 × parathyroid hormone (PTH). The area under the ROC curve (AUC) of NFI was 0.86 (95% CI: 0.79-0.93, p < 0.001) in the estimation group and 0.80 (95% CI: 0.69-0.91, p < 0.001) in the validation group, higher than NFS, FIB4, APRI, and BARD, and similar to FibroScan (NFI AUC = 0.77, 95% CI: 0.66-0.89, p = 0.001 vs. FibroScan AUC = 0.76, 95% CI: 0.62-0.90, p = 0.002). By applying the low cut-off value (-2.756), advanced fibrosis could be excluded among 49.3% and 48% of patients in the estimation group (sensitivity: 93.1%, NPV: 97.9%, specificity: 55.2%, and PPV: 26.0%) and validation group (sensitivity: 81.3%, NPV: 94.2%, specificity: 53.3%, and PPV: 23.2%), respectively, allowing them to avoid liver biopsy. CONCLUSIONS: The study has established a novel model for advanced fibrosis, the diagnostic accuracy of which is superior to the current clinical scoring systems and is similar to FibroScan.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Recién Nacido , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Aspartato Aminotransferasas , Alanina Transaminasa , Cirrosis Hepática/patología , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad , Curva ROC , Biopsia , Hígado/diagnóstico por imagen
18.
J Nanobiotechnology ; 20(1): 426, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153602

RESUMEN

BACKGROUND: Skin tissue is vital in protecting the body from injuries and bacterial infections. Wound infection caused by bacterial colonization is one of the main factors hindering wound healing. Wound infection caused by colonization of a large number of bacteria can cause the wound to enter a continuous stage of inflammation, which delays wound healing. Hydrogel wound dressing is composed of natural and synthetic polymers, which can absorb tissue fluid, improve the local microenvironment of wound, and promote wound healing. However, in the preparation process of hydrogel, the complex preparation process and poor biological efficacy limit the application of hydrogel wound dressing in complex wound environment. Therefore, it is particularly important to develop and prepare hydrogel dressings with simple technology, good physical properties and biological effects by using natural polymers. RESULTS: In this study, a gelatin-based (Tsg-THA&Fe) hydrogel was created by mixing trivalent iron (Fe3+) and 2,3,4-trihydroxybenzaldehyde (THA) to form a complex (THA&Fe), followed by a simple Schiff base reaction with tilapia skin gelatin (Tsg). The gel time and rheological properties of the hydrogels were adjusted by controlling the number of complexes. The dynamic cross-linking of the coordination bonds (o-phthalmictriol-Fe3+) and Schiff base bonds allows hydrogels to have good self-healing and injectable properties. In vitro experiments confirmed that the hydrogel had good biocompatibility and biodegradability as well as adhesion, hemostasis, and antibacterial properties. The feasibility of Tsg-THA&Fe hydrogel was studied by treating rat skin trauma model. The results showed that compared with Comfeel® Plus Transparent dressing, the Tsg-THA&Fe hydrogel could obvious reduce the number of microorganisms, prevent bacterial colonization, reduce inflammation and accelerate wound healing. Local distribution of the Tsg-THA&Fe hydrogel in the skin tissue did not cause organ toxicity. CONCLUSIONS: In summary, the preparation process of Tsg-THA&Fe hydrogel is simple, with excellent performance in physical properties and biological efficacy. It can effectively relieve inflammation and control the colonization of wound microbes, and can be used as a multi-functional dressing to improve wound healing.


Asunto(s)
Hidrogeles , Infección de Heridas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Inflamación , Hierro , Polímeros/farmacología , Ratas , Bases de Schiff , Cicatrización de Heridas
19.
Mar Drugs ; 20(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323499

RESUMEN

The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.


Asunto(s)
Aconitina/análogos & derivados , Antiinflamatorios/farmacología , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Conotoxinas/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Aconitina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Células RAW 264.7 , Receptor Nicotínico de Acetilcolina alfa 7/genética
20.
Mar Drugs ; 20(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35200675

RESUMEN

α6ß4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6ß4 nAChR is relatively poor, partly because of the lack of available target-specific α-CTxs. In this study, we synthesized a novel α-4/7 conotoxin QuIA that was found from Conus quercinus. We investigated the efficacy of this peptide to different nAChR subtypes using a two-electrode voltage-clamp technique. Remarkably, we found α-QuIA inhibited the neuronal α3ß2 and α6/α3ß4 nAChR subtypes with significantly high affinity (IC50 was 55.7 nM and 90.68 nM, respectively), and did not block other nAChR subtypes even at a high concentration of 10 µM. In contrast, most α-CTxs have been determined so far to effectively block the α6/α3ß4 nAChR subtype while also maintaining a similar higher efficacy against the closely related α6ß2ß3 and/or α3ß4 subtypes, which are different from QuIA. In conclusion, α-QuIA is a novel α4/7-CTx, which has the potential to develop as an effective neuropharmacology tool to detect the function of α6ß4 nAChR.


Asunto(s)
Conotoxinas/farmacología , Caracol Conus/metabolismo , Antagonistas Nicotínicos/farmacología , Animales , Conotoxinas/administración & dosificación , Conotoxinas/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Ratones , Antagonistas Nicotínicos/administración & dosificación , Antagonistas Nicotínicos/aislamiento & purificación , Técnicas de Placa-Clamp , Ratas , Receptores Nicotínicos/efectos de los fármacos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA