Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Chem Soc ; 144(6): 2747-2754, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108010

RESUMEN

Development of water-stable metal-organic frameworks (MOFs) for promising visible-light-driven photocatalytic water splitting is highly desirable but still challenging. Here we report a novel p-type nickel-based MOF single crystal (Ni-TBAPy-SC) and its exfoliated nanobelts (Ni-TBAPy-NB) that can bear a wide range of pH environment in aqueous solution. Both experimental and theoretical results indicate a feasible electron transfer from the H4TBAPy ligand (light-harvesting center) to the Ni-O cluster node (catalytic center), on which water splitting to produce hydrogen can be efficiently driven free of cocatalyst. Compared to the single crystal, the exfoliated two-dimensional (2D) nanobelts show more efficient charge separation due to its shortened charge transfer distance and remarkably enhanced active surface areas, resulting in 164 times of promoted water reduction activity. The optimal H2 evolution rate on the nanobelt reaches 98 µmol h-1 (ca. 5 mmol h-1 g-1) showing benchmarked apparent quantum efficiency (AQE) of 8.0% at 420 nm among water-stable MOFs photocatalysts.

2.
Inorg Chem ; 60(7): 4841-4851, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711236

RESUMEN

Luminescent copper(I) halide complexes with bi- and tridentate rigid ligands have gained wide research interests. In this paper, six tetracoordinate dinuclear copper(I) halide complexes, Cu2X2(ppda)2 [ppda = 2-[2-(dimethylamino)phenyl(phenyl)phosphino]-N,N-dimethylaniline, X = I (1), Br (2), Cl (3)] and Cu2X2(pfda)2 [pfda = 2-[2-(dimethylamino)-4-(trifluoromethyl)phenyl(phenyl)phosphino]-N,N-dimethyl-5-trifluoromethylaniline, X = I (4), Br (5), Cl (6)], were successfully prepared and systematically characterized on their structures and photophysical properties. Complexes 1-5 have a centrosymmetric form with a planar Cu2X2 unit, and complex 6 has a mirror symmetry form with a butterfly-shaped Cu2X2. Solid complexes 1, 4, and 5 emit delayed fluorescence at room temperature, intense blue to greenish yellow (λmax = 443-570 nm) light, and their peak wavelengths are located at 443-570 nm with microsecond lifetimes (τ = 0.4-19.2 µs, ΦPL = 0.05-0.48). Complexes 2, 3, and 6 show prompt fluorescence, very weak yellowish green to yellow (λmax = 534-595 nm) emission with peak wavelengths at 534-595 nm, and lifetimes in nanoseconds (τ = 4.4-9.3 ns, ΦPL < 0.0001). (Metal + halide) to ligand and intraligand charge transitions are the main origin of the emission of the complexes. Solution-processed, complex-4-based nondoped and doped devices emit yellow green light with CIE coordinated at (0.41, 0.51), a maximum EQE up to 0.17%, and luminance reaching 75.52 cd/m2.

3.
Molecules ; 26(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34684713

RESUMEN

To explore the effect of the introduction of heteroatoms on the properties of porphyrin materials, a new porphyrin-based derivative small-molecule donor named as PorTT-T was designed and synthesized based on alkyl-thieno[3,2-b]thiophene(TT)-substituted porphyrins. The linker bridge and end groups of PorTT-T were the same as those of XLP-II small-molecule donor materials, while the side-chain attached to the core of thieno[3,2-b]thiophene(TT)-substituted porphyrin was different. Measurements of intrinsic properties showed that PorTT-T has wide absorption and appropriate energy levels in the UV-visible range. A comparison of the morphologies of the two materials using atomic force microscopy showed that PorTT-T has a better surface morphology with a smaller root-mean-square roughness, and can present closer intermolecular stacking as compared to XLP-II. The device characterization results showed that PorTT-T with the introduced S atom has a higher open circuit voltage of 0.886 eV, a higher short circuit current of 12.03 mAcm-2, a fill factor of 0.499, a high photovoltaic conversion efficiency of 5.32%, better external quantum efficiency in the UV-visible range, and higher hole mobility.

4.
Inorg Chem ; 59(17): 12643-12649, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32813516

RESUMEN

We employ facile aromatic nucleophilic substitution between the mercapto (-SH) and arylfluoro (Ar-F) groups to achieve extensive and robust cross-linking of a coordination host by porphyrin guests that also serve the purpose of versatile postsynthetic functionalization. For this, a tritopic linker with three trident-like thiol-flanked carboxyl units are reacted with ZrOCl2·8H2O to afford a two-dimensional (3,6-connected) net. The wide aperture of the porous framework solid, together with its stability in both air and boiling water, facilitates the entry of bulky metalloporphyrin guests and the subsequent property studies. On the porphyrin side, four pentafluorophenyl (C6F5-) groups offer multiple fluoro groups to facilitate their replacement by the thiol groups from the host net. The inserted metalloporphyrin bridges impart to the metal-organic framework (MOF) host stable and recyclable activities for photocatalytic hydrogen production. We also disclose an improvement in synthetic methodology, in which BBr3 is used to simultaneously cleave the ester and benzyl thioether groups to more efficiently access thiol-equipped carboxylic acid building block.

5.
Nanotechnology ; 31(13): 135101, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783383

RESUMEN

The independence of photodynamic or photothermal modality create difficulties in the success of tumor therapy. In this current study, a multifunctional nanotheranostic agent of PDE-Ce6-HA was developed for tumor targeted and MRI-guided photodynamic/photothermal combined therapy (PDT/PTT). For this purpose, the near-infrared-absorbing nanoparticles of prussian blue were coated with polydopamine and successively conjugated with chlorin e6 (Ce6) for reactive oxygen species (ROS) generation. The resultant nanoparticles, denoted as PDE-Ce6, were then modified with hyaluronic acid (HA) through electrostatic interaction to yield the final therapeutic agent of PDE-Ce6-HA NPs. PDE-Ce6-HA NPs not only exhibited high colloid stability, good biocompatibility and suitable transverse relaxation rate (0.54 mM-1 s-1), but also high photothermal conversion efficiency (40.4%) and excellent ROS generation efficiency under NIR light irradiation. The confocal microscopy images demonstrated a selective uptake of PDE-Ce6-HA by CD44 overexpressed HeLa cells via HA-mediated endocytosis. Meanwhile, in vitro anti-cancer evaluation verified the significant photodynamic and photothermal combined effects of PDE-Ce6-HA on cancer cells. Moreover, PDE-Ce6-HA led to an increase of T1-MRI contrast in tumor site. Furthermore, in vivo anti-tumor evaluation proved that the PDE-Ce6-HA under both 808 and 670 nm laser showed significantly high tumor growth inhibition effects compared with individual PTT or PDT. Hence, PDE-Ce6-HA is applicable in tumor targeted and MRI-guided photodynamic/photothermal combined treatment.


Asunto(s)
Ferrocianuros/química , Ácido Hialurónico/administración & dosificación , Indoles/química , Fármacos Fotosensibilizantes/administración & dosificación , Polímeros/química , Porfirinas/administración & dosificación , Neoplasias del Cuello Uterino/terapia , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Endocitosis/efectos de los fármacos , Femenino , Células HeLa , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Imagen por Resonancia Magnética , Ratones , Células 3T3 NIH , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Porfirinas/química , Nanomedicina Teranóstica , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Bioorg Chem ; 95: 103512, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31901752

RESUMEN

In the course of our ongoing studies to discover bioactive chemical constituents from plants in the genus Isodon, two new diterpenes, kunminolide A (1) and rabdokunmin F (2) were isolated from the leaves of the medicinal plant Isodon interruptus. Kunminolide A (1) is a novel abietane-like diterpene with a novel skeleton, herein designated as 9, 10-seco-neoabietane. Rabdokunmin F (2) is an ent-kaurene diterpene with C-18 oxidized to a carboxylic acid group. The structures were determined by spectroscopic means including analysis of 1D- and 2D-NMR spectral data. Crystals of 1 obtained from methanol were suitable for X-ray analysis, which confirmed the chemical structure. Kunminolide A (1) demonstrated chemopreventive potential by inducing QR1 activity with a CD value of 14.3 µM, and rabdokunmin F (2) was found to have cytotoxic activities with IC50 values in the range of 1.1-3.0 µM.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Diterpenos/farmacología , Isodon/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Teoría Funcional de la Densidad , Diterpenos/química , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Hongos/efectos de los fármacos , Humanos , Conformación Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Hojas de la Planta/química , Tallos de la Planta/química , Plantas Medicinales/química , Relación Estructura-Actividad
7.
Chemistry ; 20(21): 6300-8, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24715494

RESUMEN

A series of simple phenothiazine-based dyes, namely, TP, EP, TTP, ETP, and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye-sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc = 15.2 mA cm(-2), Voc =0.783 V, fill factor (FF) = 0.679) and 7.87 % (Jsc = 16.1 mA cm(-2), Voc = 0.717 V, FF = 0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I(-)/I3(-) redox couple. By replacing the T group with the E unit, EP-based DSSCs had a slightly lower PCE of 7.98 % with a higher short-circuit photocurrent (Jsc) of 16.7 mA cm(-2). The dye ETP, with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP, with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.

8.
Adv Sci (Weinh) ; 11(13): e2305551, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263724

RESUMEN

2D conjugated metal-organic frameworks (c-MOFs) have emerged as promising materials for (opto)electronic applications due to their excellent charge transport properties originating from the unique layered-stacked structures with extended in-plane conjugation. The further advancement of MOF-based (opto)electronics necessitates the development of novel 2D c-MOF thin films with high quality. Cu-HHHATN (HHHATN: hexahydroxyl-hexaazatrinaphthylene) is a recently reported 2D c-MOF featuring high in-plane conjugation, strong interlayer π-π stacking, and multiple coordination sites, while the production of its thin-film form has not yet been reported. Herein, large-area Cu-HHHATN thin films with preferential orientation, high uniformity, and smooth surfaces are realized by using a convenient layer-by-layer growth method. Flexible photodetectors are fabricated, showing broadband photoresponse ranging from UV to short-wave infrared (370 to 1450 nm). The relatively long relaxation time of photocurrent, which arises from the trapping of photocarriers, renders the device's synaptic plasticity similar to that of biological synapses, promising its use in neuromorphic visual systems. This work demonstrates the great potential of Cu-HHHATN thin films in flexible optoelectronic devices for various applications.

9.
Adv Sci (Weinh) ; 11(34): e2404053, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973357

RESUMEN

Electrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm-2 at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.

10.
Chemistry ; 19(2): 739-48, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23165692

RESUMEN

Based on a donor-acceptor framework, several conjugates have been designed and prepared in which an electron-donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron-acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower-energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the Yb(III) emission in the near-infrared (NIR) region with a quantum efficiency of up to 0.73% and a lifetime of around 40 µs. Moreover, these conjugates exhibited large two-photon-absorption cross-sections that ranged from 1048-2226 GM and strong two-photon-induced NIR emission.


Asunto(s)
Compuestos de Boro/química , Transferencia de Energía , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Fotones , Porfirinas/química , Iterbio/química , Técnicas de Química Sintética , Diseño de Fármacos , Espectrofotometría Infrarroja
11.
Adv Mater ; 35(38): e2303179, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37307384

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2 RR) based on molecular catalysts, for example, cobalt porphyrin, is promising to enhance the carbon cycle and mitigate current climate crisis. However, the electrocatalytic performance and accurate evaluations remain problems because of either the low loading amount or the low utilization rate of the electroactive CoN4 sites. Herein a monomer is synthesized, cobalt(II)-5,10,15,20-tetrakis(3,5-di(thiophen-2-yl)phenyl)porphyrin (CoP), electropolymerized onto carbon nanotubes (CNTs) networks, affording a molecular electrocatalyst of 3D microporous nanofilm (EP-CoP, 2-3 nm thickness) with highly dispersed CoN4 sites. The new electrocatalyst shortens the electron transfer pathway, accelerates the redox kinetics of CoN4 sites, and improves the durability of the electrocatalytic CO2 RR. From the intrinsic redox behavior of CoN4 sites, the effective utilization rate is obtained as 13.1%, much higher than that of the monomer assembled electrode (5.8%), and the durability is also promoted dramatically (>40 h) in H-type cells. In commercial flow cells, EP-CoP can achieve a faradic efficiency for CO (FECO ) over 92% at an overpotential of 160 mV. At a higher overpotential of 620 mV, the working current density can reach 310 mA cm-2 with a high FECO of 98.6%, representing the best performance for electrodeposited molecular porphyrin electrocatalysts.

12.
ACS Appl Energy Mater ; 5(8): 10328, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36037041

RESUMEN

[This corrects the article DOI: 10.1021/acsaem.2c00977.].

13.
Top Curr Chem (Cham) ; 380(6): 49, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36123408

RESUMEN

Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (DA), linker/branch (π), or acceptors (A) in D-π-A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D-π-A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature. Similarly, in the case of inorganic complexes, the presence of IM motifs as ligands can improve the light-harvesting ability, give facilely tuned HOMO and LUMO energy levels, increase the charge recombination resistance and photostability. This results in enhanced photocurrent (JSC) and photovoltage (VOC) and consequently solar-to-power conversion efficiency (η) of DSSC devices based on Ru(II) and Ir(III) complexes. Considering the interesting DSSC applications of IM-derived molecules, in this review, we therefore comprehensively discuss their photophysical, electrochemical and photovoltaic properties reported so far and establish their structure-activity relationship to further advance the η of DSSCs. To the best of our knowledge, there is no such a review interpreting the importance of molecules possessing IM-motifs for DSSC applications to date.

14.
Materials (Basel) ; 15(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35057220

RESUMEN

Cancer is one of the major diseases threatening human health. Traditional cancer treatments have notable side-effects as they can damage the immune system. Recently, phototherapy, as a potential strategy for clinical cancer therapy, has received wide attention due to its minimal invasiveness and high efficiency. Herein, a small organic molecule (PTA) with a D-A-D structure was prepared via a Sonogashira coupling reaction between the electron-withdrawing dibromo-perylenediimide and electron-donating 4-ethynyl-N,N-diphenylaniline. The amphiphilic organic molecule was then transformed into nanoparticles (PTA-NPs) through the self-assembling method. Upon laser irradiation at 635 nm, PTA-NPs displayed a high photothermal conversion efficiency (PCE = 43%) together with efficient reactive oxygen species (ROS) generation. The fluorescence images also indicated the production of ROS in cancer cells with PTA-NPs. In addition, the biocompatibility and photocytotoxicity of PTA-NPs were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead cell co-staining test. Therefore, the as-prepared organic nanomaterials were demonstrated as promising nanomaterials for cancer phototherapy in the clinic.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36288457

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) with multiple functions and permanent pores have received widespread attention due to their potential applications in gas adsorption/separation, drug delivery, photocatalysis, proton conduction, and other fields. Herein, we constructed a three-dimensional (3D) HOF with 1D square channels by utilizing a dual-functional tetrazolyl porphyrin ligand bearing an active center of the porphyrin core and open sites of nitrogen atoms through π-π stacking and hydrogen-bonding interaction self-assembly. The structure exhibits both solvent resistance and thermal stability, and especially, maintains these after being transformed into nanoparticles. Meanwhile, the active sites exposed on the inner wall of the pores can interact well with the photoactive cationic dye molecules to form an effective host-guest (H-G) system, which can realize boosted photosensitized singlet oxygen (1O2) production under red light irradiation and synergistic sterilization toward Staphylococcus aureus (S. aureus) with an inhibition ratio as high as 99.9%. This work provides a valuable design concept for HOF-related systems in pursuit of promoted photoactivity.

16.
Adv Mater ; 34(32): e2204140, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35765163

RESUMEN

Cu3 (HHTT)2 (HHTT: 2,3,7,8,12,13-hexahydroxytetraazanaphthotetraphene) is a novel 2D conjugated metal-organic framework (2D c-MOF) with efficient in-plane d-π conjugations and strong interlayer π-π interactions while the growth of Cu3 (HHTT)2 thin films has never been reported until now. Here, the successful fabrication of highly oriented wafer-scale Cu3 (HHTT)2 thin films with a layer-by-layer growth method on various substrates is presented. Its semiconducting behavior and carrier transport mechanisms are clarified through temperature and frequency-dependent conductivity measurements. Flexible photodetectors based on Cu3 (HHTT)2 thin films exhibit reliable photoresponses at room temperature in a wavelength region from UV to mid-IR, which is much broader than those of solution-processed broadband photodetectors reported previously. Moreover, the photodetectors can show a typical synaptic behavior and excellent data recognition accuracy in artificial neural networks. This work opens a window for the exploration of high-performance and multifunctional optoelectronic devices based on 2D c-MOFs.

17.
ACS Appl Mater Interfaces ; 14(38): 43246-43256, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112025

RESUMEN

Wide-bandgap perovskites as a class of promising top-cell materials have shown great promise in constructing efficient perovskite-based tandem solar cells, but their intrinsic relatively low radiative efficiency results in a large open-circuit voltage (VOC) deficit and thereby limits the whole device performance. Reducing film flaws or optimizing interfacial energy level alignments in wide-bandgap perovskite devices can efficiently inhibit nonradiative recombination to boost device VOC and efficiency. However, the simultaneous regulation on both sides and their underlying mechanism are less explored. Herein, a bifunctional modification approach is proposed to optimize the wide-bandgap perovskite surface with an ultrathin layer of phenylethylammonium acetate (PEAAc) to synchronously decrease the surface imperfection and mitigate the interfacial energy barrier. This treatment effectively heals under-coordinated surface defects through the formation of chemical interaction between the perovskite and PEAAc, bringing about a much slower charge trapping process and dramatically decreasing nonradiative recombination losses. Meanwhile, the passivation-induced upshifted Fermi level of the perovskite contributes to accelerated electron extraction and larger Fermi-level splitting under illumination. Consequently, the PEAAc-modified wide-bandgap (1.68 eV) device achieves an optimal efficiency of 20.66% with a high VOC of 1.25 V, among the highest reported VOC values for wide-bandgap perovskite devices, enormously outperforming that (18.86% and 1.18 V) of the device without passivation. In addition, the radiative limit of VOC for both cells is determined to be 1.42 V, delivering nonradiative recombination losses of 0.24 and 0.17 V for the control and PEAAc-modified devices, respectively. These results highlight the significance of the bifunctional modification strategy in achieving high-performance wide-bandgap perovskite devices.

18.
J Am Chem Soc ; 133(50): 20120-2, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22103884

RESUMEN

A water-soluble porphyrinato ytterbium complex linked with rhodamine B (Yb-2) showed mitochondria-specific subcellular localization and strong two-photon-induced NIR emissions (λ(em) = 650 nm, porphyrinate ligand π → π* transition; λ(em) = 1060 nm, Yb(III) (5)F(5/2) → (5)F(7/2) transitions; σ(2) = 375 GM in DMSO) with an impressive Yb(III) NIR emission quantum yield (1% at λ(ex) = 340 nm; 2.5% at λ(ex) = 430 nm) in aqueous solution.


Asunto(s)
Mitocondrias/química , Espectroscopía Infrarroja Corta , Agua/química , Iterbio/química , Solubilidad
19.
Chemistry ; 17(25): 7041-52, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21557344

RESUMEN

A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.


Asunto(s)
ADN/química , Iones/química , Elementos de la Serie de los Lantanoides/química , Óxidos/química , Porfirinas/química , Agua/química , Cristalografía por Rayos X , Luminiscencia , Estructura Molecular , Espectroscopía Infrarroja Corta , Difracción de Rayos X
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119365, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33418474

RESUMEN

A novel dual-functional chemosensor, derived from the conjugation of rhodamine B with a quinoline derivative (RHQ), was firstly synthesized with high efficiency and cost-effectiveness for the distinguishable detections of Cu2+ and Hg2+ via ring-opening and ring-forming mechanism. The chemosensor exhibits highly selective and distinguishable responses for Cu2+ and Hg2+ in CH3CN-H2O (4:1, v/v) with off-on fluorescence and ratiometric ultraviolet-visible (UV-Vis) absorption changes. Additionally, Cu2+ is identified by opening a rhodamine spirocycle with a UV-Vis absorption band, at around 560 nm and fluorescence turn-on. Interestingly, Hg2+ is discerned by opening the rhodamine spirocycle and by generating a new special cycle for the quinoline unit. Resultantly, there were two UV-Vis absorption bands at around 365 nm and 560 nm, which were accompanied by fluorescence turn-on. Moreover, the chemosensor can quantitatively detect Cu2+ and Hg2+ by off-on fluorescence and ratiometric UV-Vis absorption changes, respectively. Furthermore, the chemosensor with low cytotoxicity could be successfully administered to monitor Cu2+ and Hg2+ in living cells. This work may pay the way for the development of dual-functional chemosensor for quantificationally detecting metal ions in environmental and biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA