Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(7): e23583, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551634

RESUMEN

We have recently demonstrated that Jumonji domain-containing protein D3 (JMJD3), a histone demethylase of histone H3 on lysine 27 (H3K27me3), is protective against renal fibrosis, but its role in acute kidney injury (AKI) remains unexplored. Here, we report that JMJD3 activity is required for renal protection and regeneration in murine models of AKI induced by ischemia/reperfusion (I/R) and folic acid (FA). Injury to the kidney upregulated JMJD3 expression and induced expression of H3K27me3, which was coincident with renal dysfunction, renal tubular cell injury/apoptosis, and proliferation. Blocking JMJD3 activity by GSKJ4 led to worsening renal dysfunction and pathological changes by aggravating tubular epithelial cell injury and apoptosis in both murine models of AKI. JMJD3 inhibition by GSKJ4 also reduced renal tubular cell proliferation and suppressed expression of cyclin E and phosphorylation of CDK2, but increased p21 expression in the injured kidney. Furthermore, inactivation of JMJD3 enhanced I/R- or FA-induced expression of TGF-ß1, vimentin, and Snail, phosphorylation of Smad3, STAT3, and NF-κB, and increased renal infiltration by F4/80 (+) macrophages. Finally, GSKJ4 treatment caused further downregulation of Klotho, BMP-7, Smad7, and E-cadherin, all of which are associated with renal protection and have anti-fibrotic effects. Therefore, these data provide strong evidence that JMJD3 activation contributes to renal tubular epithelial cell survival and regeneration after AKI.


Asunto(s)
Lesión Renal Aguda , Histonas , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Proliferación Celular , Histonas/metabolismo , Riñón/metabolismo , Fosforilación
2.
FASEB J ; 37(1): e22712, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527439

RESUMEN

Mixed lineage leukemia 1 (MLL1), a histone H3 lysine 4 (H3K4) methyltransferase, exerts its enzymatic activity by interacting with menin and other proteins. It is unclear whether inhibition of the MLL1-menin interaction influences epithelial-mesenchymal transition (EMT), renal fibroblast activation, and renal fibrosis. In this study, we investigated the effect of disrupting MLL1-menin interaction on those events and mechanisms involved in a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), in cultured mouse proximal tubular cells and renal interstitial fibroblasts. Injury to the kidney increased the expression of MLL1 and menin and H3K4 monomethylation (H3K4me1); MLL1 and menin were expressed in renal epithelial cells and renal interstitial fibroblasts. Inhibition of the MLL1-menin interaction by MI-503 administration or siRNA-mediated silencing of MLL1 attenuated UUO-induced renal fibrosis, and reduced expression of α-smooth muscle actin (α-SMA) and fibronectin. These treatments also inhibited UUO-induced expression of transcription factors Snail and Twist and transforming growth factor ß1 (TGF-ß1) while expression of E-cadherin was preserved. Moreover, treatment with MI-503 and transfection with either MLL siRNA or menin siRNA inhibited TGF-ß1-induced upregulation of α-SMA, fibronectin and Snail, phosphorylation of Smad3 and AKT, and downregulation of E-cadherin in cultured renal epithelial cells. Finally, MI-503 was effective in abrogating serum or TGFß1-induced transformation of renal interstitial fibroblasts to myofibroblasts in vitro. Taken together, these results suggest that targeting disruption of the MLL1-menin interaction attenuates renal fibrosis through inhibition of partial EMT and renal fibroblast activation.


Asunto(s)
Enfermedades Renales , Leucemia , Obstrucción Ureteral , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Fibronectinas/metabolismo , Fibrosis , Enfermedades Renales/etiología , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Obstrucción Ureteral/metabolismo , Riñón/metabolismo , Transición Epitelial-Mesenquimal , Cadherinas/metabolismo , ARN Interferente Pequeño/metabolismo
3.
Acta Pharmacol Sin ; 45(1): 137-149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37640899

RESUMEN

Sirtuins (Sirts) are a family of nicotinamide adenine dinucleotide-dependent protein deacetylases that share diverse cellular functions. Increasing evidence shows that Sirts play a critical role in podocyte injury, which is a major determinant of proteinuria-associated renal disease. Membranous nephropathy (MN) is a typical glomerular disease in which podocyte damage mediates proteinuria development. In this study we investigated the molecular mechanisms underlying the regulatory roles of Sirt in podocyte injury in MN patients, rats with cationic bovine serum albumin (CBSA)-induced MN and zymosan activation serum (ZAS)-stimulated podocytes. Compared with healthy controls, MN patients showed significant reduction in intrarenal Sirt1 and Sirt6 protein expression. In CBSA-induced MN rats, significant reduction in intrarenal Sirt1, Sirt3 and Sirt6 protein expression was observed. However, only significant decrease in Sirt6 protein expression was found in ZAS-stimulated podocytes. MN patients showed significantly upregulated protein expression of Wnt1 and ß-catenin and renin-angiotensin system (RAS) components in glomeruli. CBSA-induced MN rats exhibited significantly upregulated protein expression of intrarenal Wnt1 and ß-catenin and their downstream gene products as well as RAS components. Similar results were observed in ZAS-stimulated podocytes. In ZAS-stimulated podocytes, treatment with a specific Sirt6 activator UBCS039 preserved the protein expression of podocin, nephrin and podocalyxin, accompanied by significant inhibition of the protein expression of ß-catenin and its downstream gene products, including Snail1 and Twist; treatment with a ß-catenin inhibitor ICG-001 significantly preserved the expression of podocyte-specific proteins and inhibited the upregulation of downstream ß-catenin gene products accompanied by significant suppression of the protein expression of RAS components. Thus, we demonstrate that Sirt6 ameliorates podocyte injury by blocking RAS signalling via the Wnt1/ß-catenin pathway. Sirt6 is a specific therapeutic target for the treatment of podocyte damage-associated renal disease.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Ratas , Animales , beta Catenina/metabolismo , Podocitos/metabolismo , Sirtuina 1/metabolismo , Sistema Renina-Angiotensina , Enfermedades Renales/metabolismo , Proteinuria
4.
Am J Physiol Cell Physiol ; 325(4): C1085-C1096, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694285

RESUMEN

Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiopatías , Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/genética , Fibronectinas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos
5.
Am J Physiol Renal Physiol ; 325(5): F669-F680, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37733875

RESUMEN

Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation (H3K4me3) and partially exerts its untoward functional effects by interacting with multiple subunits including menin and WD repeat-containing protein 5 (WDR5). In this study, we investigated the role and mechanisms of MLL1 in murine models of acute kidney injury induced by folic acid (FA) and ischemia-reperfusion. Injury to the kidney elevated the expression of MLL1, menin, WDR5, and H3K4Me3, which was accompanied by increased serum creatinine and blood urea nitrogen, renal tubular injury, and apoptosis. Pharmacological inhibition of MLL1 activity with MI503 to disrupt the interaction between MLL1 with menin further increased serum creatinine and blood urea nitrogen levels, enhanced expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and induced more apoptosis in the kidney following FA and ischemia-reperfusion injury. In contrast, MI503 treatment decreased the expression of vimentin and proliferating cell nuclear antigens. Similarly, treatment with MM102 to disrupt the interaction between MLL1 and WDR5 also worsened renal dysfunction, aggravated tubular cell injury, increased apoptosis, and inhibited cellular dedifferentiation and proliferation in mice following FA injection. Moreover, MI503 inhibited FA-induced phosphorylation of epidermal growth factor receptor, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase-1/2 in injured kidneys. Collectively, these data suggest that MLL1 contributes to renal protection and functional recovery and promotes renal regeneration through a mechanism associated with activation of the epidermal growth factor receptor signaling pathway.NEW & NOTEWORTHY Mixed lineage leukemia 1 (MLL1) is a methyltransferase that induces histone H3 lysine 4 trimethylation and exerts its functional roles by interacting with multiple subunits. In this study, we demonstrated that inhibition of MLL1 activity by MI503 or MM102 aggravated renal injury and apoptosis and suppressed renal tubular cell dedifferentiation and proliferation, suggesting that MLL1 activation during acute kidney injury acts as an intrinsic protective mechanism to mediate renal tubular cell survival and regeneration.


Asunto(s)
Lesión Renal Aguda , Leucemia , Daño por Reperfusión , Ratones , Animales , Histonas/metabolismo , Ácido Fólico/farmacología , Creatinina , Lisina/uso terapéutico , Proteína de la Leucemia Mieloide-Linfoide/efectos adversos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Lesión Renal Aguda/metabolismo , Receptores ErbB/metabolismo , Factores de Transcripción/metabolismo , Leucemia/complicaciones , Leucemia/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Isquemia/complicaciones , Reperfusión , Metiltransferasas/metabolismo
6.
Kidney Int ; 103(3): 544-564, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581018

RESUMEN

The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-ß1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Insuficiencia Renal Crónica , Animales , Ratones , Apoptosis , Línea Celular Tumoral , Receptores ErbB , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Riñón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
7.
FASEB J ; 36(1): e22122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958158

RESUMEN

Lysine-specific histone demethylase 1 (LSD1) as the first identified histone/lysine demethylase regulates gene expression and protein functions in diverse diseases. In this study, we show that the expression of LSD1 is increased in mouse kidneys with unilateral ureteral obstruction (UUO) and in cultured NRK-52E cells undergoing TGF-ß1-induced epithelial-mesenchymal transition (EMT). Inhibition of LSD1 with its specific inhibitor ORY1001 attenuated renal EMT and fibrosis, which was associated with decreased the deposition of extracellular matrix proteins and the expression of fibrotic markers, including α-smooth muscle actin (α-SMA) and fibronectin, and the recovery of E-cadherin expression and decrease of N-cadherin expression in UUO kidneys and in NRK-52E cells induced with TGF-ß1. Targeting LSD1 also decreased the expression of Snail family transcriptional repressor 1 (Snail-1) and its interaction with LSD1 in UUO kidneys and in NRK-52E cells treated with TGF-ß1. In addition, we identified a novel LSD1-14-3-3ζ-PKCα axis in the regulation of the activation of AKT and Stat3 and then the activation of fibroblasts. This study suggests that LSD1 plays a critical role in regulation of renal EMT and fibrosis through activation of diverse signaling pathways and places an emphasis that LSD1 has potential as a therapeutic target for the treatment of renal fibrosis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Histona Demetilasas , Riñón/enzimología , Animales , Línea Celular , Transición Epitelial-Mesenquimal/genética , Fibrosis , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/enzimología , Enfermedades Renales/genética , Masculino , Ratones , Ratas
8.
Exp Mol Pathol ; 134: 104869, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37690529

RESUMEN

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Asunto(s)
Fibronectinas , Integrina alfaV , Animales , Humanos , Ratones , Fibronectinas/genética , Fibronectinas/farmacología , Hemorragia , ARN Guía de Sistemas CRISPR-Cas
9.
J Pathol ; 258(2): 164-178, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792675

RESUMEN

The catalytic subunit of polycomb repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2), has been reported to be involved in angiogenesis in some tumors and autoimmune diseases. However, the mechanisms by which EZH2 regulates peritoneal angiogenesis remain unclear. We detected the expression of EZH2 in clinical samples and the peritoneal tissue of a mouse peritoneal fibrosis model induced by chlorhexidine gluconate (CG). In addition, we further investigated the mechanisms by which inhibition of EZH2 by 3-deazaneplanocin A (3-DZNeP) alleviated the CG-induced peritoneal fibrosis mouse model in vivo and 3-DZNeP or EZH2 siRNA treatment in cultured human peritoneal mesothelial cells (HPMCs) and human umbilical vein endothelial cells (HUVECs). The expression of EZH2 in the peritoneum of long-term peritoneal dialysis (PD) patients and the CG-induced peritoneal fibrosis mouse model was remarkably increased and this was positively associated with higher expression of vascular markers (CD31, CD34, VEGF, p-VEGFR2). Peritoneal injection of 3-DZNeP attenuated angiogenesis in the peritoneum of CG-injured mice; improved peritoneal membrane function; and decreased phosphorylation of STAT3, ERK1/2, and activation of Wnt1/ß-catenin. In in vitro experiments, we demonstrated that inhibition of EZH2 by 3-DZNeP or EZH2 siRNA decreased tube formation and the migratory ability of HUVECs via two pathways: the Wnt1/ß-catenin pathway and the IL-6/STAT3 pathway. Suppression of the Wnt1/ß-catenin pathway and the IL-6/STAT3 pathway subsequently reduced VEGF production in HPMCs. Using specific inhibitors of VEGFR2, ERK1/2, and HIF-1α, we found that a VEGFR2/ERK1/2/HIF-1α axis existed and contributed to angiogenesis in vitro. Moreover, phosphorylation of VEGFR2 and activation of the ERK1/2 pathway and HIF-1α in HUVECs could be suppressed by inhibition of EZH2. Taken together, the results of this study suggest that EZH2 may be a novel target for preventing peritoneal angiogenesis in PD patients. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Fibrosis Peritoneal , Peritoneo , Animales , Proteína Potenciadora del Homólogo Zeste 2 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Neovascularización Patológica/patología , Fibrosis Peritoneal/metabolismo , Peritoneo/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
10.
Ren Fail ; 45(1): 2237124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482915

RESUMEN

BACKGROUND: The treatment of refractory nephrotic syndrome (RNS) is full of challenges and the role of rituximab (RTX) is not well-established, thus this study aims to demonstrate the role of RTX in RNS. METHODS: This was a multicenter retrospective study of all adult patients receiving RTX for RNS. Patients enrolled were divided into two groups according to pathological pattern: 20 patients as a group of podocytopathy (including minimal change disease [MCD] and focal and segmental glomerulosclerosis [FSGS]), and 26 patients as membranous nephropathy (MN) group. The remission rate, relapse rate, adverse effects, and predictors of remission were analyzed. RESULTS: A total of 75 patients received RTX for RNS and 48 were available for analysis after exclusion criteria. No significant difference in the remission rate at 6 or 12 months was observed between the MCD/FSGS and MN cases (p > 0.05). The median duration of the first complete remission (CR) was 1 month in the podocytopathy group and 12.5 months in the MN group. Three relapses were associated with infection as the ultimate outcome, and 6 out of 48 remained refractory representing a response rate of 87.5% in RNS. Clinical predictors of cumulative CR were estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and mean arterial pressure (MAP) ≤103 mmHg at the beginning of therapy in patients with MN. No serious adverse effects were reported. CONCLUSIONS: RTX appears to be effective in RNS across various clinical and pathological subtypes, exhibiting a low relapse rate and minimal significant side effects in the majority of patients.


Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Humanos , Adulto , Rituximab/efectos adversos , Estudios Retrospectivos , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Síndrome Nefrótico/tratamiento farmacológico , Resultado del Tratamiento , Nefrosis Lipoidea/tratamiento farmacológico , Glomerulonefritis Membranosa/tratamiento farmacológico , Recurrencia , Enfermedad Crónica , Inmunosupresores/uso terapéutico
11.
J Cell Mol Med ; 26(14): 4061-4075, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35734954

RESUMEN

Polycomb repressive complex 2 (PRC2) is a multicomponent complex with methyltransferase activity that catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3). Interaction of the epigenetic reader protein EED with EZH2, a catalytic unit of PRC, allosterically stimulates PRC2 activity. In this study, we investigated the role and underlying mechanism of the PRC2 in acute kidney injury (AKI) by using EED226, a highly selective PRC2 inhibitor, to target EED. Administration of EED226 improved renal function, attenuated renal pathological changes, and reduced renal tubular cell apoptosis in a murine model of cisplatin-induced AKI. In cultured renal epithelial cells, treatment with either EED226 or EED siRNA also ameliorated cisplatin-induced apoptosis. Mechanistically, EED226 treatment inhibited cisplatin-induced phosphorylation of p53 and FOXO3a, two transcriptional factors contributing to apoptosis, and preserved expression of Sirtuin 3 and PGC1α, two proteins associated with mitochondrial protection in vivo and in vitro. EED226 was also effective in enhancing renal tubular cell proliferation, suppressing expression of multiple inflammatory cytokines, and reducing infiltration of macrophages to the injured kidney. These data suggest that inhibition of the PRC2 activity by targeting EED can protect against cisplatin-induced AKI by promoting the survival and proliferation of renal tubular cells and inhibiting inflammatory response.


Asunto(s)
Lesión Renal Aguda , Complejo Represivo Polycomb 2 , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Animales , Cisplatino , Histonas/metabolismo , Lisina/metabolismo , Ratones , Complejo Represivo Polycomb 2/metabolismo
12.
FASEB J ; 35(7): e21715, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34143514

RESUMEN

SET and MYND domain protein 2 (SMYD2) is a lysine methyltransferase that mediates histone H3 lysine 36 trimethylation (H3K36me3) and acts as a regulator of tumorgenesis and cystic growth. However, its role in renal fibrosis remains unknown. In this study, we found that SMYD2 was highly expressed in the murine kidney of renal fibrosis induced by unilateral ureteral obstruction, and primarily located in interstitial fibroblasts and renal tubular epithelial cells. Pharmacological inhibition of SMYD2 with AZ505, a highly selective inhibitor of SMYD2, protected against renal fibrosis and inhibited activation/proliferation of renal interstitial fibroblasts and conversion of epithelial cells to a profibrotic phenotype in this model. In cultured renal interstitial fibroblasts, treatment with AZ505 or silencing of SMYD2 by specific siRNA also inhibited serum- or TGF-ß1-induced activation and proliferation of renal interstitial fibroblasts. Mechanistic studies showed that SMYD2 inhibition reduced phosphorylation of several profibrotic signaling molecules, including Smad3, extracellular signal-regulated kinase 1/2, AKT, signal transducer and activator of transcription-3 and nuclear factor-κB in both injured kidney and cultured renal fibroblasts. AZ505 was also effective in suppressing renal expression of Snail and Twist, two transcriptional factors that mediate renal partial epithelial-mesenchymal transition and fibrosis. Conversely, AZ505 treatment prevented downregulation of Smad7, a renoprotective factor in vivo and in vitro. These results indicate that SMYD2 plays a critical role in mediating conversion of epithelial cells to a profibrotic phenotype, renal fibroblast activation and renal fibrogenesis, and suggest that SMYD2 may be a potential target for the treatment of chronic fibrosis in kidney disease.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Lisina/metabolismo , Metiltransferasas/metabolismo , Animales , Benzoxazinas , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/fisiología , ARN Interferente Pequeño/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Obstrucción Ureteral/metabolismo , beta-Alanina/análogos & derivados
13.
Ren Fail ; 44(1): 2073-2084, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36645038

RESUMEN

BACKGROUND: Left ventricular hypertrophy is associated with adverse outcomes among peritoneal dialysis patients. The aim of this study was to evaluate the prognostic impact of baseline left ventricular hypertrophy and its relationship with baseline peritoneal transfer characteristics in peritoneal dialysis patients. METHODS: We enrolled 151 incident peritoneal dialysis patients to perform a multicentric retrospective cohort study since January 1, 2017 to January 31, 2021. Patients were grouped based on baseline dialysate-to-plasma creatinine ratio at 4 h as follows: low (<0.50), low average (0.5-0.64), high average (0.65-0.80) and high (≥0.81). Echocardiography and clinic data were recorded yearly. The Cox proportional hazards models and competing risk model were used to evaluate patients' survival. Generalized linear mixed models were performed to explore risk factors associated with left ventricular hypertrophy. RESULTS: During a median follow-up period of 33 months (range, 16-48 months), 21 (13.9%) patients died, including 16 (10.60%) cardiovascular deaths. Controlling the competing risks of switching to hemodialysis, kidney transplantation and loss to follow-up, baseline left ventricular hypertrophy was an independent risk factor for all-cause mortality (subdistribution hazard ratio, 2.645; 95% confidence interval, 1.156-6.056; p = 0.021). Baseline high and high average transport status were positively related to left ventricular mass index and left atrium diameter 2 years after PD initiation. CONCLUSION: Baseline fast peritoneal solute transport rate may be an effect factor for aggravating left ventricular hypertrophy which predicted poor outcomes for peritoneal dialysis patients. The findings offered important ideas for further prospective intervention study.


Asunto(s)
Fallo Renal Crónico , Diálisis Peritoneal , Humanos , Estudios Retrospectivos , Pronóstico , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/epidemiología , Hipertrofia Ventricular Izquierda/etiología , Diálisis Peritoneal/efectos adversos , Peritoneo , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia
14.
Sheng Li Xue Bao ; 74(1): 73-79, 2022 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-35199128

RESUMEN

Histone acetylation is one of the epigenetic modifications. Histone acetylation, which is catalyzed by histone acetyltransferases and negatively regulated by histone deacetylases, plays an important role in a variety of cellular physiological and pathophysiological processes. Recent studies have shown that histone deacetylases are involved in a variety of pathophysiological responses to acute kidney injury, such as apoptosis, dedifferentiation, proliferation and regeneration. This article reviews the role and underlying mechanism of histone deacetylases in acute kidney injury induced by ischemia reperfusion, nephrotoxicants, sepsis and rhabdomyolysis.


Asunto(s)
Lesión Renal Aguda , Histona Desacetilasas , Acetilación , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
15.
J Cell Mol Med ; 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949772

RESUMEN

Nintedanib, an Food and Drug Administration (FDA) approved multiple tyrosine kinase inhibitor, exhibits an anti-fibrotic effect in lung and kidneys. Its effect on peritoneal fibrosis remains unexplored. In this study, we found that nintedanib administration lessened chlorhexidine gluconate (CG)-induced peritoneal fibrosis and reduced collagen I and fibronectin expression. This coincided with suppressed phosphorylation of platelet-derived growth factor receptor, fibroblast growth factor receptors, vascular endothelial growth factor receptor and Src family kinase. Mechanistically, nintedanib inhibited injury-induced mesothelial-to-mesenchymal transition (MMT), as demonstrated by decreased expression of α-smooth muscle antigen and vimentin and preserved expression of E-cadherin in the CG-injured peritoneum and cultured human peritoneal mesothelial cells exposed to transforming growth factor-ß1. Nintedanib also suppressed expression of Snail and Twist, two transcription factors associated with MMT in vivo and in vitro. Moreover, nintedanib treatment inhibited expression of several cytokines/chemokines, including tumour necrosis factor-α, interleukin-1ß and interleukin-6, monocyte chemoattractant protein-1 and prevented infiltration of macrophages to the injured peritoneum. Finally, nintedanib reduced CG-induced peritoneal vascularization. These data suggest that nintedanib may attenuate peritoneal fibrosis by inhibiting MMT, inflammation, and angiogenesis and have therapeutic potential for the prevention and treatment of peritoneal fibrosis in patients on peritoneal dialysis.

16.
J Cell Mol Med ; 25(18): 8628-8644, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34309202

RESUMEN

The relationship between baseline high peritoneal solute transport rate (PSTR) and the prognosis of peritoneal dialysis (PD) patients remains unclear. The present study combined clinical data and basic experiments to investigate the impact of baseline PSTR and the underlying molecular mechanisms. A total of 204 incident CAPD patients from four PD centres in Shanghai between 1 January 2014 and 30 September 2020 were grouped based on a peritoneal equilibration test after the first month of dialysis. Analysed with multivariate Cox and logistic regression models, baseline high PSTR was a significant risk factor for technique failure (AHR 5.70; 95% CI 1.581 to 20.548 p = 0.008). Baseline hyperuricemia was an independent predictor of mortality (AHR 1.006 95%CI 1.003 to 1.008, p < 0.001) and baseline high PSTR (AOR 1.007; 95%CI 1.003 to 1.012; p = 0.020). Since uric acid was closely related to high PSTR and adverse prognosis, the in vitro experiments were performed to explore the underlying mechanisms of which uric acid affected peritoneum. We found hyperuricemia induced epithelial-to-mesenchymal transition (EMT) of cultured human peritoneal mesothelial cells by activating TGF-ß1/Smad3 signalling pathway and nuclear transcription factors. Conclusively, high baseline PSTR induced by hyperuricaemia through EMT was an important reason of poor outcomes in CAPD patients.


Asunto(s)
Fallo Renal Crónico/terapia , Diálisis Peritoneal/efectos adversos , Adolescente , Adulto , Anciano , Soluciones para Diálisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Riesgo , Adulto Joven
17.
Am J Physiol Renal Physiol ; 321(3): F269-F277, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34251272

RESUMEN

Primary cilia are widely regarded as specialized sensors in differentiated cells that have been implicated in the regulation of cell proliferation, differentiation, and viability. We have previously shown that shortening of primary cilia sensitizes cultured kidney tubular cells to cisplatin-induced apoptosis. Intraflagellar transport 88 (IFT88) is an essential component for ciliogenesis and maintenance. Here, we have further examined the effect of proximal tubule-specific IFT88 ablation on cisplatin-induced acute kidney injury (AKI). In this study, more severe AKI occurred in IFT88 knockout mice than age- and sex-matched wild-type mice. Mechanistically, cisplatin stimulated autophagy in kidney tubular cells as an intrinsic protective mechanism. However, renal autophagy was severely impaired in IFT88 knockout mice. In cultured HK-2 cells, cisplatin induced more apoptosis when IFT88 was knocked down. Tat-beclin 1 peptide, a specific autophagy activator, could partially prevent IFT88-associated cell death during cisplatin treatment, although cilium length was not improved significantly. Reexpression of IFT88 partially restored autophagy in IFT88 knockdown cells and suppressed apoptosis during cisplatin treatment. Taken together, these results indicate that defective autophagy in IFT88-deficient kidney cells and tissues contributes to the exaggerated AKI following cisplatin exposure.NEW & NOTEWORTHY Almost every cell has one hair-like, nonmotile antenna projecting from the cell surface, named the primary cilium. In kidney tubular cells, the primary cilium has a protective role, but the underlying mechanism is unclear. This study shows that a short cilium leads to the suppression of autophagy, which is responsible for the heightened injury sensitivity. These findings provide the clues of how to manipulate primary cilium and autophagy to save kidneys.


Asunto(s)
Lesión Renal Aguda/genética , Autofagia/efectos de los fármacos , Cisplatino/farmacología , Proteínas Supresoras de Tumor/deficiencia , Lesión Renal Aguda/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/genética , Cilios/metabolismo , Cisplatino/efectos adversos , Células Epiteliales/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Ratones
18.
Am J Physiol Renal Physiol ; 320(6): F1030-F1044, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900853

RESUMEN

Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Porcinos , Animales
19.
Respir Res ; 22(1): 194, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217280

RESUMEN

BACKGROUND: We recently reported histone methyltransferase enhancer of zeste homolog 2 (EZH2) as a key epigenetic regulator that contributes to the dysfunction of innate immune responses to sepsis and subsequent lung injury by mediating the imbalance of macrophage polarization. However, the role of EZH2 in acute respiratory distress syndrome (ARDS)-associated fibrosis remains poorly understood. METHODS: In this study, we investigated the role and mechanisms of EZH2 in pulmonary fibrosis in a murine model of LPS-induced ARDS and in ex-vivo cultured alveolar macrophages (MH-S) and mouse lung epithelial cell line (MLE-12) by using 3-deazaneplanocin A (3-DZNeP) and EZH2 the small interfering (si) RNA. RESULTS: We found that treatment with 3-DZNeP significantly ameliorated the LPS-induced direct lung injury and fibroproliferation by blocking EMT through TGF-ß1/Smad signaling pathway and regulating shift of macrophage phenotypes. In the ex-vivo polarized alveolar macrophages cells, treatment with EZH2 siRNA or 3-DZNeP suppressed the M1 while promoted the M2 macrophage differentiation through modulating the STAT/SOCS signaling pathway and activating PPAR-γ. Moreover, we identified that blockade of EZH2 with 3-DZNeP suppressed the epithelial to mesenchymal transition (EMT) in co-cultured bronchoalveolar lavage fluid (BALF) and mouse lung epithelial cell line through down-regulation of TGF-ß1, TGF-ßR1, Smad2 while up-regulation of Smad7 expression. CONCLUSIONS: These results indicate that EZH2 is involved in the pathological process of ARDS-associated pulmonary fibrosis. Targeting EZH2 may be a potential therapeutic strategy to prevent and treat pulmonary fibrosis post ARDS.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Macrófagos/metabolismo , Fenotipo , Fibrosis Pulmonar/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Técnicas de Cocultivo , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/prevención & control , ARN Interferente Pequeño/administración & dosificación , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/prevención & control
20.
FASEB J ; 34(6): 7295-7310, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281211

RESUMEN

Histone deacetylases (HDACs) have been shown to alleviate renal fibrosis, however, the role of individual HDAC isoforms in this process is poorly understood. In this study, we examined the role of HDAC8 in the development of renal fibrosis and partial epithelial-mesenchymal transitions (EMT). In a murine model of renal fibrosis induced by unilateral ureteral obstruction (UUO), HDAC8 was primarily expressed in renal tubular epithelial cells and time-dependently upregulated. This occurred in parallel with the deacetylation of cortactin, a nonhistone substrate of HDAC8, and increased expression of three fibrotic markers: α-smooth muscle actin, collagen 1, and fibronectin. Administration of PCI34051, a highly selective inhibitor of HDAC8, restored acetylation of contactin and reduced expression of those proteins. PCI34051 treatment also reduced the number of renal tubular epithelial cells arrested at the G2/M phase of the cell cycle and suppressed phosphorylation of Smad3, STAT3, ß-catenin, and expression of Snail after ureteral obstruction. In contrast, HDAC8 inhibition reversed UUO-induced downregulation of BMP7 and Klotho, two renoprotective proteins. In cultured murine proximal tubular cells, treatment with PCI34051 or specific HDAC8 siRNA was also effective in inhibiting transforming growth factor ß1 (TGFß1)-induced deacetylation of contactin, EMT, phosphorylation of Smad3, STAT3, and ß-catenin, upregulation of Snail, and downregulation of BMP7 and Klotho. Collectively, these results suggest that HDAC8 activation is required for the EMT and renal fibrogenesis by activation of multiple profibrotic signaling and transcription factors, and suppression of antifibrotic proteins. Therefore, targeting HDAC8 may be novel therapeutic approach for treatment of renal fibrosis.


Asunto(s)
Fibrosis/metabolismo , Histona Desacetilasas/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Acetilación/efectos de los fármacos , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Fibrosis/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Riñón/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA