RESUMEN
Folding to a well-defined conformation is essential for the function of structured ribonucleic acids (RNAs) like the ribosome and tRNA. Structured elements in the untranslated regions (UTRs) of specific messenger RNAs (mRNAs) are known to control expression. The importance of unstructured regions adopting multiple conformations, however, is still poorly understood. High-resolution SHAPE-directed Boltzmann suboptimal sampling of the Homo sapiens Retinoblastoma 1 (RB1) 5' UTR yields three distinct conformations compatible with the experimental data. Private single nucleotide variants (SNVs) identified in two patients with retinoblastoma each collapse the structural ensemble to a single but distinct well-defined conformation. The RB1 5' UTRs from Bos taurus (cow) and Trichechus manatus latirostris (manatee) are divergent in sequence from H. sapiens (human) yet maintain structural compatibility with high-probability base pairs. SHAPE chemical probing of the cow and manatee RB1 5' UTRs reveals that they also adopt multiple conformations. Luciferase reporter assays reveal that 5' UTR mutations alter RB1 expression. In a traditional model of disease, causative SNVs disrupt a key structural element in the RNA. For the subset of patients with heritable retinoblastoma-associated SNVs in the RB1 5' UTR, the absence of multiple structures is likely causative of the cancer. Our data therefore suggest that selective pressure will favor multiple conformations in eukaryotic UTRs to regulate expression.
Asunto(s)
Regiones no Traducidas 5' , Proteína de Retinoblastoma/fisiología , Humanos , Filogenia , Conformación Proteica , Proteína de Retinoblastoma/genética , Relación Estructura-ActividadRESUMEN
The host eIF4F translation initiation complex plays a critical role the translation of capped mRNAs. Although human cytomegalovirus (HCMV) infection increases the abundance and activity of the host eIF4F complex, the requirement for eIF4F components in HCMV replication and mRNA translation has not been directly tested. In this study, we found that decreasing the abundance or activity of eIF4F from the start of infection inhibits HCMV replication. However, as infection progresses, viral mRNA translation and replication becomes increasingly resistant to eIF4F inhibition. During the late stage of infection the association of representative immediate-early, early, and late mRNAs with polysomes was not affected by eIF4F disruption. In contrast, eIF4F inhibition decreased the translation of representative host eIF4F-dependent mRNAs during the late stage of infection. A global analysis of the translation efficiency of HCMV mRNAs during the late stage of infection found that eIF4F disruption had a minimal impact on the association of HCMV mRNAs with polysomes but significantly diminished the translation efficiency of eIF4F-dependent host transcripts. Together, our data show that the translation of host eIF4F-dependent mRNAs remains dependent on eIF4F activity during HCMV infection. However, during the late stage of infection the translation efficiency of viral mRNAs does not correlate with the abundance or activity of the host eIF4F complex.
Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Proteínas Virales/genética , Línea Celular , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/genética , Factor 4F Eucariótico de Iniciación/genética , Regulación Viral de la Expresión Génica , Humanos , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
Human cytomegalovirus (HCMV) requires the robust expression of two immediate early proteins, IE1 and IE2, immediately upon infection to suppress the antiviral response and promote viral gene expression. While transcriptional control of IE1 and IE2 has been extensively studied, the role of post-transcriptional regulation of IE1 and IE2 expression is relatively unexplored. We previously found that the shared major immediate early 5' untranslated region (MIE 5' UTR) of the mature IE1 and IE2 transcripts plays a critical role in facilitating the translation of the IE1 and IE2 mRNAs. As RNA secondary structure in 5' UTRs can regulate mRNA translation efficiency, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) to identify RNA structures in the shared MIE 5' UTR. We found that the MIE 5' UTR contains three stable stem loop structures. Using a series of recombinant viruses to investigate the role of each stem loop in IE1 and IE2 protein synthesis, we found that the stem loop closest to the 5' end of the MIE 5' UTR (SL1) is both necessary and sufficient for efficient IE1 and IE2 mRNA translation and HCMV replication. The positive effect of SL1 on mRNA translation and virus replication was dependent on its location within the 5' UTR. Surprisingly, a synthetic stem loop with the same free energy as SL1 in its native location also supported wild type levels of IE1 and IE2 mRNA translation and virus replication, suggesting that the presence of RNA structure at a specific location in the 5' UTR, rather than the primary sequence of the RNA, is critical for efficient IE1 and IE2 protein synthesis. These data reveal a novel post-transcriptional regulatory mechanism controlling IE1 and IE2 expression and reinforce the critical role of RNA structure in regulating HCMV protein synthesis and replication.IMPORTANCEThese results reveal a new aspect of immediate early gene regulation controlled by non-coding RNA structures in viral mRNAs. Previous studies have largely focused on understanding viral gene expression at the level of transcriptional control. Our results show that a complete understanding of the control of viral gene expression must include an understanding of viral mRNA translation, which is driven in part by RNA structure(s) in the 5' UTR of viral mRNAs. Our results illustrate the importance of these additional layers of regulation by defining specific 5' UTR RNA structures regulating immediate early gene expression in the context of infection and identify important features of RNA structure that govern viral mRNA translation efficiency. These results may therefore broadly impact current thinking on how viral gene expression is regulated for human cytomegalovirus and other DNA viruses.
Asunto(s)
Citomegalovirus , Proteínas Inmediatas-Precoces , Humanos , Regiones no Traducidas 5' , Citomegalovirus/fisiología , Proteínas Virales/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Replicación Viral , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Human cytomegalovirus (HCMV) was recently shown to encode a large number of spliced mRNAs. While the nuclear export of unspliced viral transcripts has been extensively studied, the role of host mRNA export factors in HCMV mRNA trafficking remains poorly defined. We found that the eIF4AIII RNA helicase, a component of the exon junction complex, was necessary for efficient virus replication. Depletion of eIF4AIII limited viral DNA accumulation, export of viral mRNAs from the nucleus, and the production of progeny virus. However eIF4AIII was dispensable for the association of viral transcripts with ribosomes. We found that pateamine A, a natural compound that inhibits both eIF4AI/II and eIF4AIII, has potent antiviral activity and inhibits HCMV replication throughout the virus lytic cycle. Our results demonstrate that eIF4AIII is required for efficient HCMV replication, and suggest that eIF4A family helicases may be a new class of targets for the development of host-directed antiviral therapeutics.