Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 19(8): 3438-3451, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32609523

RESUMEN

Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.


Asunto(s)
Reposo en Cama , Vibración , Reposo en Cama/efectos adversos , Estudios Cruzados , Suplementos Dietéticos , Humanos , Masculino , Músculo Esquelético , Proteoma , Suero Lácteo , Proteína de Suero de Leche
2.
Front Zool ; 16: 12, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080489

RESUMEN

BACKGROUND: In mammals, the hibernating state is characterized by biochemical adjustments, which include metabolic rate depression and a shift in the primary fuel oxidized from carbohydrates to lipids. A number of studies of hibernating species report an upregulation of the levels and/or activity of lipid oxidizing enzymes in muscles during torpor, with a concomitant downregulation for glycolytic enzymes. However, other studies provide contrasting data about the regulation of fuel utilization in skeletal muscles during hibernation. Bears hibernate with only moderate hypothermia but with a drop in metabolic rate down to ~ 25% of basal metabolism. To gain insights into how fuel metabolism is regulated in hibernating bear skeletal muscles, we examined the vastus lateralis proteome and other changes elicited in brown bears during hibernation. RESULTS: We show that bear muscle metabolic reorganization is in line with a suppression of ATP turnover. Regulation of muscle enzyme expression and activity, as well as of circulating metabolite profiles, highlighted a preference for lipid substrates during hibernation, although the data suggested that muscular lipid oxidation levels decreased due to metabolic rate depression. Our data also supported maintenance of muscle glycolysis that could be fuelled from liver gluconeogenesis and mobilization of muscle glycogen stores. During hibernation, our data also suggest that carbohydrate metabolism in bear muscle, as well as protein sparing, could be controlled, in part, by actions of n-3 polyunsaturated fatty acids like docosahexaenoic acid. CONCLUSIONS: Our work shows that molecular mechanisms in hibernating bear skeletal muscle, which appear consistent with a hypometabolic state, likely contribute to energy and protein savings. Maintenance of glycolysis could help to sustain muscle functionality for situations such as an unexpected exit from hibernation that would require a rapid increase in ATP production for muscle contraction. The molecular data we report here for skeletal muscles of bears hibernating at near normal body temperature represent a signature of muscle preservation despite atrophying conditions.

3.
Antioxidants (Basel) ; 8(9)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443506

RESUMEN

Oxidative stress, which is believed to promote muscle atrophy, has been reported to occur in a few hibernators. However, hibernating bears exhibit efficient energy savings and muscle protein sparing, despite long-term physical inactivity and fasting. We hypothesized that the regulation of the oxidant/antioxidant balance and oxidative stress could favor skeletal muscle maintenance in hibernating brown bears. We showed that increased expressions of cold-inducible proteins CIRBP and RBM3 could favor muscle mass maintenance and alleviate oxidative stress during hibernation. Downregulation of the subunits of the mitochondrial electron transfer chain complexes I, II, and III, and antioxidant enzymes, possibly due to the reduced mitochondrial content, indicated a possible reduction of the production of reactive oxygen species in the hibernating muscle. Concomitantly, the upregulation of cytosolic antioxidant systems, under the control of the transcription factor NRF2, and the maintenance of the GSH/GSSG ratio suggested that bear skeletal muscle is not under a significant oxidative insult during hibernation. Accordingly, lower levels of oxidative damage were recorded in hibernating bear skeletal muscles. These results identify mechanisms by which limited oxidative stress may underlie the resistance to skeletal muscle atrophy in hibernating brown bears. They may constitute therapeutic targets for the treatment of human muscle atrophy.

4.
J Pharm Biomed Anal ; 70: 1-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22677656

RESUMEN

Acetylcholinesterase inhibitors (AChEI) are one of the drugs families validated for clinical use in the treatment of Alzheimer's disease (AD). For this reason, finding new more potent and more selective AChEIs is always of interest. Since 1961, the inhibitory activity of AChEI is evaluated through the Ellman's method. Herein, we reported a MS-based evaluation of potential new AChEI with the determination of their inhibitory activity (IC(50) and K(I)). Compared to the Ellman's method, that uses the substrate analog acetylthiocholine, the electrospray ionization ion trap mass spectrometry (ESI-IT-MS) consists in monitoring the conversion ratio of a low concentration of the natural substrate - acetylcholine to choline. We present here the inhibition activity of huprine X and six of its derivates (bearing different functional groups at position 9) towards the recombinant human (rhAChE) and Electrophorus electricus acetylcholinesterase (EelAChE). Mechanisms of action of selected inhibitors were evaluated by means of Lineweaver-Burk plot analysis. The Michaelis-Menten constants (K(M)), inhibitory constants (K(I)) were examined as well as the IC(50) to allow classifying a series of huprine derivatives by inhibition potency by a comparison with a reference (huprine X). Our results demonstrate that these drugs are very potent AChE inhibitors, especially (±)-huprine 6 with an inhibitory activity on recombinant human AChE (rhAChE) in the picomolar range. This study reveals the interest of huprine compounds in the treatment of AD.


Asunto(s)
Aminoquinolinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas/métodos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Acetilcolina/metabolismo , Acetilcolinesterasa/metabolismo , Aminoquinolinas/química , Animales , Colina/metabolismo , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus/metabolismo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Cinética , Modelos Biológicos , Estructura Molecular , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA