Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bone Miner Metab ; 41(6): 877-889, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37898574

RESUMEN

INTRODUCTION: The aim of this analysis is to construct a combined model that integrates radiomics, clinical risk factors, and machine learning algorithms to diagnose osteoporosis in patients and explore its potential in clinical applications. MATERIALS AND METHODS: A retrospective analysis was conducted on 616 lumbar spine. Radiomics features were extracted from the computed tomography (CT) scans and anteroposterior and lateral X-ray images of the lumbar spine. Logistic regression (LR), support vector machine (SVM), and random forest (RF) algorithms were used to construct radiomics models. The receiver operating characteristic curve (ROC) was employed to select the best-performing model. Clinical risk factors were identified through univariate logistic regression analysis (ULRA) and multivariate logistic regression analysis (MLRA) and utilized to develop a clinical model. A combined model was then created by merging radiomics and clinical risk factors. The performance of the models was evaluated using ROC curve analysis, and the clinical value of the models was assessed using decision curve analysis (DCA). RESULTS: A total of 4858 radiomics features were extracted. Among the radiomics models, the SVM model demonstrated the optimal diagnostic capabilities and accuracy, with an area under the curve (AUC) of 0.958 (0.9405-0.9762) in the training cohort and 0.907 (0.8648-0.9492) in the test cohort. Furthermore, the combined model exhibited an AUC of 0.959 (0.9412-0.9763) in the training cohort and 0.910 (0.8690-0.9506) in the test cohort. CONCLUSION: The combined model displayed outstanding ability in diagnosing osteoporosis, providing a safe and efficient method for clinical decision-making.


Asunto(s)
Osteoporosis , Tomografía Computarizada por Rayos X , Humanos , Rayos X , Estudios Retrospectivos , Aprendizaje Automático , Osteoporosis/diagnóstico por imagen
2.
J Cell Physiol ; 236(7): 5432-5445, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33377210

RESUMEN

Osteoblasts are the main functional cells of bone formation, and they are responsible for the synthesis, secretion, and mineralization of the bone matrix. Phosphatidylinositol-3-kinase/Akt is an important signaling pathway involved in the regulation of cell proliferation, death, and survival. Some studies have shown that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) plays an important role in the phosphorylation of Akt. In the present study, an osteocalcin (OCN) promoter-driven Cre-LoxP system was established to specifically delete the PDK-1 gene in osteoblasts. It was found that the size and weight of PDK-1 conditional gene knockout (cKO) mice were significantly reduced. von Kossa staining and microcomputed tomography showed that the trabecular thickness, trabecular number, and bone volume were significantly decreased, whereas trabecular separation was increased, as compared with wide-type littermates, which were characterized by a decreased bone mass. A model of distal femoral defect was established, and it was found that cKO mice delayed bone defect repair. In osteoblasts derived from PDK-1 cKO mice, the alkaline phosphatase (ALP) secretion and ability of calcium mineralization were significantly decreased, and the expressions of osteoblast-related proteins, runt-related transcription factor 2, OCN, and ALP were also clearly decreased. Moreover, the phosphorylation level of Akt and downstream factor GSK3ß and their response to insulin-like growth factor-1 (IGF-1) decreased clearly. Therefore, we believe that PDK-1 plays a very important role in osteoblast differentiation and bone formation by regulating the PDK-1/Akt/GSK3ß signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Regeneración Ósea/genética , Osteoblastos/metabolismo , Osteogénesis/genética , Animales , Diferenciación Celular/genética , Ratones , Ratones Noqueados
3.
J Cell Biochem ; 121(11): 4542-4557, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048762

RESUMEN

Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3ß, and reduced induction of NFATc1. GSK3ß is a reported negative regulator of NFATc1. GSK3ß activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/fisiología , Resorción Ósea/patología , Regulación de la Expresión Génica , Osteoclastos/patología , Osteopetrosis/patología , Animales , Apoptosis , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteopetrosis/etiología , Osteopetrosis/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo
4.
J Cell Physiol ; 234(8): 14259-14269, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30656690

RESUMEN

Spinal cord injury (SCI) is a public health problem in the world. The SCI usually triggers an excessive inflammatory response that brings about a secondary tissue wreck leading to further cellular and organ dysfunction. Hence, there is great potential of reducing inflammation for therapeutic strategies of SCI. In this study, we aim to investigate if Salidroside (SAD) exerts an anti-inflammatory effect and promotes recovery of motor function on SCI through suppressing nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathways. In vitro, real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine the inhibitory effect of SAD on the expression and release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) activated by lipopolysaccharide (LPS) in astrocytes. In addition, SAD was found to inhibit NF-κB, p38 and extracellular-regulated protein kinases (ERK) signaling pathways by western blot analysis. Further, in vivo study showed that SAD was able to improve hind limb motor function and reduce tissue damage accompanied by the suppressed expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Overall, SAD could reduce the inflammatory response and promote motor function recovery in rats after SCI by inhibiting NF-κB, p38, and ERK signaling pathways.


Asunto(s)
Citocinas/genética , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Fenoles/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Astrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-1beta , Interleucina-6/genética , Lipopolisacáridos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , FN-kappa B/genética , Ratas , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Factor de Necrosis Tumoral alfa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
J Cell Physiol ; 233(1): 476-485, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28294321

RESUMEN

Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases.


Asunto(s)
Artemisininas/farmacología , Resorción Ósea/tratamiento farmacológico , Lipopolisacáridos , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteólisis/prevención & control , Ligando RANK/metabolismo , Animales , Artesunato , Resorción Ósea/genética , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Proteínas I-kappa B/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Osteogénesis/genética , Osteólisis/inducido químicamente , Osteólisis/metabolismo , Osteólisis/patología , Fosforilación , Proteolisis , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo , Microtomografía por Rayos X
6.
Cell Physiol Biochem ; 50(2): 512-524, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30308489

RESUMEN

BACKGROUND/AIMS: miR-136-5p participates in recovery after spinal cord injury (SCI) via an unknown mechanism. We investigated the mechanism underlying the involvement of miR-136-5p in the inflammatory response in a rat model of SCI. METHODS: Sprague-Dawley rat astrocytes were cultured in vitro to construct a reporter plasmid. Luciferase assays were used to detect the ability of miR-136-5p to target the IKKß and A20 genes. Next, recombinant lentiviral vectors were constructed, which either overexpressed miR-136-5p or inhibited its expression. The influence of miR-136-5p overexpression and miR-136-5p silencing on inflammation was observed in vivo in an SCI rat model. The expression of IL-1ß, IL-6, TNF-α, IFN-α, and related proteins (A20, IKKß, and NF-κB) was detected. RESULTS: In vitro studies showed that luciferase activity was significantly activated in the presence of the 3' untranslated region (UTR) region of the IKKß gene after stimulation of cells with miR-136-5p. However, luciferase activity was significantly inhibited in the presence of the 3'UTR region of the A20 gene. Thus, miR-136-5p may act directly on the 3'UTR regions of the IKKß and A20 genes to regulate their expression. miR-136-5p overexpression promoted the production of related cytokines and NF-κB in SCI rats and inhibited the expression of A20 protein. CONCLUSION: Overexpression of miR-136-5p promotes the generation of IL-1ß, IL-6, TNF-α, IFN-α, IKKß, and NF-κB in SCI rats but inhibits the expression of A20. Under these conditions, inflammatory cell infiltration into the rat spinal cord increases and injury is significantly aggravated. Silencing of miR-136-5p significantly reduces the protein expression results described after miR-136-5p overexpression and ameliorates the inflammatory cell infiltration and damage to the spinal cord. Therefore, miR-136-5p might be a new target for the treatment of SCI.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Quinasa I-kappa B/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Traumatismos de la Médula Espinal/patología , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Citocinas/análisis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Quinasa I-kappa B/química , Quinasa I-kappa B/genética , Interleucina-1beta/análisis , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , FN-kappa B/genética , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/veterinaria , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/análisis
7.
Cell Physiol Biochem ; 48(2): 644-656, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30025412

RESUMEN

BACKGROUND/AIMS: Extensive osteoclast formation plays a critical role in bone diseases, including rheumatoid arthritis, periodontitis and the aseptic loosening of orthopedic implants. Thus, identification of agents that can suppress osteoclast formation and bone resorption is important for the treatment of these diseases. Monocrotaline (Mon), the major bioactive component of crotalaria sessiliflora has been investigated for its anti-cancer activities. However, the effect of Mon on osteoclast formation and osteolysis is not known. METHODS: The bone marrow macrophages (BMMs) were cultured with M-CSF and RANKL followed by Mon treatment. Then the effects of Mon on osteoclast differentiation were evaluated by counting TRAP (+) multinucleated cells. Moreover, effects of Mon on hydroxyapatite resorption activity of mature osteoclast were studied through resorption areas measurement. The involved potential signaling pathways were analyzed by performed Western blotting and quantitative real-time PCR examination. Further, we established a mouse calvarial osteolysis model to measure the osteolysis suppressing effect of Mon in vivo. RESULTS: In this study, we show that Mon can inhibit RANKL-induced osteoclast formation and function in a dose-dependent manner. Mon inhibits the expression of osteoclast marker genes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K. Furthermore, Mon inhibits RANKL-induced the activation of p38 and JNK. Consistent with in vitro results, Mon exhibits protective effects in an in vivo mouse model of LPS-induced calvarial osteolysis. CONCLUSION: Taken together our data demonstrate that Mon may be a potential prophylactic anti-osteoclastic agent for the treatment of osteolytic diseases caused by excessive osteoclast formation and function.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Monocrotalina/farmacología , Osteogénesis/efectos de los fármacos , Osteólisis/prevención & control , Sustancias Protectoras/uso terapéutico , Ligando RANK/farmacología , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocrotalina/química , Monocrotalina/uso terapéutico , Osteoclastos/citología , Osteoclastos/metabolismo , Osteólisis/etiología , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Cráneo/diagnóstico por imagen , Cráneo/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Cell Physiol Biochem ; 44(3): 1224-1241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29179211

RESUMEN

BACKGROUND/AIMS: The pathophysiology of spinal cord injury (SCI) results in serious damage to the human body via an increase in the secondary biological processes imposed by activated astrocytes. Abnormal expression of microRNAs after SCI has become a potential research focus. However, the underlying mechanisms are poorly understood. METHODS: SCI models were established in rats using Allen's method, and the BBB scoring method was employed to assess locomotor function. Lentivirus was used to infect rat astrocytes and SCI rats. Real-time PCR and antibody chip were used to measure gene expression and cytokine secretion. Western blot analysis was employed to detect protein expression. HE staining was used to assess the histological changes in SCI. The immunohistochemical staining of A20 and p-NF-κB in SCI was also analyzed. RESULTS: The in vitro experiment showed that miR-136-5p up-regulated the expression of p-NF-κB by down-regulating the expression of A20 so that astrocytes produced inflammatory factors and chemokines. The in vivo experiment indicated that overexpressed miR-136-5p promoted the production of inflammatory factors, chemokines and p-NF-κB in SCI rats, whereas it inhibited the expression of A20 protein and increased inflammatory cell infiltration and injuries in the spinal cord. CONCLUSION: The current findings indicate that silencing miR-136-5p effectively decreased inflammatory factors and chemokines and protected the spinal cord via NF-κB/A20 signaling in vivo and in vitro. In contrast, overexpression of miR-136-5p had the opposite effect.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interleucina-17/farmacología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Transcriptoma/efectos de los fármacos , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Microscopía Fluorescente , FN-kappa B/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/veterinaria , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa
9.
Cell Physiol Biochem ; 41(4): 1596-1604, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28355611

RESUMEN

BACKGROUND/AIMS: This study focused on investigating the regulatory mechanism of miR-136-5p in mouse astrocytes stimulated with interleukin-17(IL-17). METHODS: C57BL/6 mouse astrocytes were stimulated with IL-17 (100ng/ml) for various periods of time (0-48 hours) and at various doses (0-200 ng), and the expression levels of inflammatory cytokine and chemokine genes (IL-6, TNF-α, MCP-1, MCP-5 and MIP-2) were then detected by real-time PCR. The expression of the A20 gene was measured with real-time PCR in cells that were stimulated with IL-17 (50 ng/ml) for various periods of time (0-48 hours). C57BL/6 mouse astrocytes were transfected with Ctrl-anti-miR-136-5p or LNA -anti-miR-136-5p for 48 h. Thereafter, the cells were stimulated with or without IL-17 (50ng/ml) for 6 h. The level of A20 protein (TNFα-induced protein 3, TNFAIP3) was detected by Western blot analysis. RESULTS: (1) Compared with the DMEM control group, within six hours, IL-17 stimulation significantly increased the expression levels of inflammatory cytokine and chemokine genes and clearly decreased the expression level of the A20 protein. (2) Without IL-17 stimulation, the expression level of the miR-136-5p gene was significantly decreased, whereas in the miR-136-5p-inhibition group, the A20 protein expression was elevated. IL-17 stimulation slightly decreased the expression of the A20 protein in the miR-136-5p-inhibition group, but it was still slightly higher than in the control group. CONCLUSION: This study demonstrated that miR-136-5p affected the expression of A20 in IL-17-stimulated astrocytes.


Asunto(s)
Astrocitos/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Médula Espinal/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Astrocitos/citología , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Ratones , MicroARNs/genética , Médula Espinal/citología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
10.
Eur Spine J ; 26(1): 267-277, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27613009

RESUMEN

PURPOSE: To examine the association between Vitamin D receptor (VDR) gene polymorphisms and lumbar disc degeneration (LDD) predisposition. METHODS: A comprehensive literature search was conducted to identify all the relevant studies. The allele/genotype frequencies were extracted from each study. We calculated the pooled odds ratios (ORs) and 95 % confidence intervals (CI) to assess the strength of the association between the VDR gene polymorphisms and LDD risk. Statistical analysis was performed using RevMan 5.31 software. RESULTS: A total of 23 case-control studies (1835 cases and 1923 controls) were included in this systematic review. For the TaqI (rs731236), FokI (rs2228570) and ApaI (rs7975232) polymorphisms of VDR gene, nine studies, seven studies, and five studies, were eventually included in the meta-analysis, respectively. There was no evidence that the VDR gene polymorphisms (TaqI, FokI, ApaI) had significant associations with LDD risk.(for TaqI allelic comparison, OR = 1.07, 95 % CI 0.81-1.40, p = 0.64; for FokI allelic comparison, OR = 1.23, 95 % CI 0.83-1.82, p = 0.31; for ApaI allelic comparison, OR = 0.79, 95 % CI 0.55-1.14, p = 0.20). For stratified analyses by ethnicity and study design, no significant associations were found in Caucasian population and Asian population, as well as the population-based studies and hospital-based studies under all genetic models. CONCLUSIONS: TaqI, FokI, and ApaI polymorphisms of VDR gene were not significantly associated with the predisposition of LDD. Large-scale and well-designed international studies are needed to further analyze this field.


Asunto(s)
Degeneración del Disco Intervertebral/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Predisposición Genética a la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA