Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Euro Surveill ; 29(6)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333936

RESUMEN

Crimean-Congo haemorrhagic fever (CCHF), a potentially severe zoonotic viral disease causing fever and haemorrhagic manifestations in humans. As the Crimean-Congo haemorrhagic fever virus (CCHFV) has been detected in ticks in Spain and antibodies against the virus in ruminant sera in Corsica, it was necessary to know more about the situation in France. In 2022-2023, CCHFV was detected in 155 ticks collected from horses and cattle in southern France.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Garrapatas , Humanos , Animales , Bovinos , Caballos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/diagnóstico , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Zoonosis , Francia/epidemiología
2.
One Health ; 17: 100630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024266

RESUMEN

Ticks are amongst the most important zoonotic disease vectors affecting human and animal health worldwide. Tick-borne diseases (TBDs) are rapidly expanding geographically and in incidence, most notably in temperate regions of Europe where ticks are considered the principal zoonotic vector of Public Health relevance, as well as a major health and economic preoccupation in agriculture and equine industries. Tick-borne pathogen (TBP) transmission is contingent on complex, interlinked vector-pathogen-host dynamics, environmental and ecological conditions and human behavior. Tackling TBD therefore requires a better understanding of the interconnected social and ecological variables (i.e., the social-ecological system) that favor disease (re)-emergence. The One Health paradigm recognizes the interdependence of human, animal and environmental health and proposes an integrated approach to manage TBD. However, One Health interventions are limited by significant gaps in our understanding of the complex, systemic nature of TBD risk, in addition to a lack of effective, universally accepted and environmentally conscious tick control measures. Today individual prevention gestures are the most effective strategy to manage TBDs in humans and animals, making local communities important actors in TBD detection, prevention and management. Yet, how they engage and collaborate within a multi-actor TBD network has not yet been explored. Here, we argue that transdisciplinary collaborations that go beyond research, political and medical stakeholders, and extend to local community actors can aid in identifying relevant social-ecological risk indicators key for informing multi-level TBD detection, prevention and management measures. This article proposes a transdisciplinary social-ecological systems framework, based on participatory research approaches, to better understand the necessary conditions for local actor engagement to improve TBD risk. We conclude with perspectives for implementing this methodological framework in a case study in the south of France (Occitanie region), where multi-actor collaborations are mobilized to stimulate multi-actor collective action and identify relevant social-ecological indicators of TBD risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA