Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 321, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864510

RESUMEN

BACKGROUND: The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. METHODS: CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein-protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. RESULTS: The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. CONCLUSIONS: Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI.


Asunto(s)
Perfilación de la Expresión Génica , Infarto del Miocardio , Linfocitos T CD8-positivos/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Macrófagos/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Mapas de Interacción de Proteínas
2.
J Cell Physiol ; 234(7): 11440-11450, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30548582

RESUMEN

microRNAs (miRs) are essential in the development of heart failure. The aim of this study is to investigate the effect of microRNA-330 (miR-330) on left ventricular remodeling via the TGF-ß1/Smad3 signaling pathway by targeting the sex-determining region Y (SRY) in mice with myocardial ischemia-reperfusion injury (MIRI). Differentially expressed gene (DEG) in myocardial ischemia-reperfusion (IR) was screened out and the miR that targeted the DEG was also predicted and verified. A model of MIRI was established to detect the expression of miR-330, SRY, transforming growth factor-ß (TGF-ß1), and Sekelsky mothers against dpp3 (Smad3). To further investigate the role of miR-330 in MIRI with the involvement of SRY and TGF-ß1/Smad3 signaling pathway, the modeled mice were treated with different mimic, inhibitor, or small interfering RNA (siRNA) to observe the changes of the related gene expression, as well as the myocardial infarction size and volume of myocardial collagen. SRY was screened out and verified as a target gene of miR-330. The MIRI mice showed enlarged myocardial infarction size, increased volume of myocardial collagen, increased expression of miR-330, TGF-ß1 and Smad3, while decreased the expression of SRY. The MIRI mice treated with miR-330 inhibitor showed decreased myocardial infarction size, the volume of myocardial collagen, and expression of TGF-ß1 and Smad3 but promoted expression of SRY. Our findings demonstrated that downregulated miR-330 could suppress left ventricular remodeling to inhibit the activation of the TGF-ß1/Smad3 signaling pathway via negatively targeting of SRY in mice with MIRI. This can be a potential target in the strategy to attenuate patient suffering.


Asunto(s)
MicroARNs/metabolismo , Isquemia Miocárdica/patología , Proteína de la Región Y Determinante del Sexo/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Ventricular , Animales , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Isquemia Miocárdica/metabolismo , Distribución Aleatoria , Daño por Reperfusión , Proteína de la Región Y Determinante del Sexo/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/genética
3.
Heliyon ; 10(16): e36125, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229516

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease with unclear pathological mechanisms. In this study, we utilized bidirectional Mendelian randomization (MR) to analyze the relationship between serum metabolites and IPF, and conducted metabolic pathway analysis. Aim: To determine the causal relationship between serum metabolites and IPF using MR analysis. Methods: A two-sample MR analysis was conducted to evaluate the causal relationship between 824 serum metabolites and IPF. The inverse variance weighted (IVW) method was used to estimate the causal relationship between exposure and results. Sensitivity analysis was conducted using MR Egger, weighted median, and maximum likelihood to eliminate pleiotropy. Additionally, metabolic pathway analysis was conducted to identify potential metabolic pathways. Results: We identified 12 serum metabolites (6 risks and 6 protective) associated with IPF from 824 metabolites. Among them, 11 were known and 1 was unknown. 1-Eicosatrienoylglycophorophospholine and 1-myristoylglycophorophospholine were bidirectional MR positive factors, with 1-myristoylglycophorophospholine being a risk factor (1.0013, 1.0097) and 1-eicosatrienoylglycophorine being a protective factor (0.9914, 0.9990). The four lipids (1-linoleoylglycerophoethanolamine*, total cholesterol in large high-density lipoprotein [HDL], cholesterol esters in very large HDL, and phospholipids in very large HDL) and one NA metabolite (degree of unsaturation) were included in the known hazardous metabolites. The known protective metabolites included three types of lipids (carnitine, 1-linoleoylglycerophoethanolamine*, and 1-eicosatrienoylglycerophophophorine), one amino acid (hypoxanthine), and two unknown metabolites (the ratio of omega-6 fatty acids to omega-3 fatty acids, and the ratio of photoshopids to total lipids ratio in chylomicrons and extremely large very low-density lipoprotein [VLDL]). Moreover, sn-Glycerol 3-phosphate and 1-Acyl-sn-glycero-3-phosphocline were found to be involved in the pathogenesis of IPF through metabolic pathways such as Glycerolide metabolism and Glycerophospholipid metabolism. Conclusion: Our study identified 6 causal risks and 6 protective serum metabolites associated with IPF. Additionally, 2 metabolites were found to be involved in the pathogenesis of IPF through metabolic pathways, providing a new perspective for further understanding the metabolic pathway and the pathogenesis of IPF.

4.
Exp Ther Med ; 22(5): 1200, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34584545

RESUMEN

The present study aimed to investigate the regulatory mechanism of chemokine (C-X-C motif) receptor 4 (CXCR4) on endothelial progenitor cells (EPCs) through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway under hypoxic conditions. Mononuclear cells were isolated from the bone marrow (BM) of young Sprague-Dawley (SD) rats. Bone marrow-derived endothelial progenitor cells (BM-EPCs) were characterized by using Dil-labeled acetylated low-density lipoprotein (Dil-ac-LDL) and fluorescein isothiocyanate-labeled UEA (FITC-UEA-1). Phenotype identification of BM-EPCs was based on red cytoplasm and green cytomembrane. Flow cytometry was employed to examine the markers CD14, CD34, and KDR. Expression level of the EPC-specific surface marker CD14 was found to be negative, while the expression level of CD34 and KDR was positive. In addition, CXCR4 was stably overexpressed in BM-EPCs after transfection with adenovirus-CXCR4. Cell proliferation, migration and apoptosis abilities were measured through the application of CCK-8, followed by Transwell and flow cytometry assays. The expression level of CXCR4, PI3K and Akt was determined by reverse transcription-quantitative PCR and western blotting assays. Functional experiments demonstrated that hypoxia inhibited BM-EPC proliferation and migration, while accelerating BM-EPC apoptosis. Additionally, CXCR4 was found to promote proliferation and migration, and suppress apoptosis in BM-EPCs with or without hypoxia treatment. Evidence also demonstrated that CXCR4 markedly upregulated the expression levels of PI3K and Akt. Furthermore, PI3K inhibitor (LY294002) and CXCR4 inhibitor (AMD3100) effectively inhibited the proliferation, migration and resistance to apoptosis of CXCR4-mediated BM-EPCs under hypoxic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA