Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294408

RESUMEN

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Asunto(s)
Acetilcolina/inmunología , Proteínas Bacterianas/farmacología , Cilios/inmunología , Depuración Mucociliar/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Canales Catiónicos TRPM/inmunología , Tráquea/inmunología , Acetilcolina/metabolismo , Animales , Proteínas Bacterianas/inmunología , Transporte Biológico , Cilios/efectos de los fármacos , Cilios/metabolismo , Femenino , Formiatos/metabolismo , Expresión Génica , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Comunicación Paracrina/inmunología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Papilas Gustativas/inmunología , Papilas Gustativas/metabolismo , Tráquea/efectos de los fármacos , Tráquea/patología , Virulencia
2.
BMC Biol ; 21(1): 152, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37424020

RESUMEN

BACKGROUND: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS: We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS: Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.


Asunto(s)
Órgano Vomeronasal , Ratones , Animales , Órgano Vomeronasal/fisiología , Lipopolisacáridos , Encéfalo , Células Receptoras Sensoriales , Inflamación
3.
EMBO J ; 37(3): 427-445, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29335280

RESUMEN

The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel ß3 (Scn3b), rather than the ß1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Células Receptoras Sensoriales/metabolismo , Acetamidas/farmacología , Analgésicos/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lacosamida , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas/fisiología , Sinaptotagmina II/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Subunidad beta-3 de Canal de Sodio Activado por Voltaje/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(11): 5135-5143, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804203

RESUMEN

Aggression is controlled by the olfactory system in many animal species. In male mice, territorial and infant-directed aggression are tightly regulated by the vomeronasal organ (VNO), but how diverse subsets of sensory neurons convey pheromonal information to limbic centers is not yet known. Here, we employ genetic strategies to show that mouse vomeronasal sensory neurons expressing the G protein subunit Gαi2 regulate male-male and infant-directed aggression through distinct circuit mechanisms. Conditional ablation of Gαi2 enhances male-male aggression and increases neural activity in the medial amygdala (MeA), bed nucleus of the stria terminalis, and lateral septum. By contrast, conditional Gαi2 ablation causes reduced infant-directed aggression and decreased activity in MeA neurons during male-infant interactions. Strikingly, these mice also display enhanced parental behavior and elevated neural activity in the medial preoptic area, whereas sexual behavior remains normal. These results identify Gαi2 as the primary G protein α-subunit mediating the detection of volatile chemosignals in the apical layer of the VNO, and they show that Gαi2+ VSNs and the brain circuits activated by these neurons play a central role in orchestrating and balancing territorial and infant-directed aggression of male mice through bidirectional activation and inhibition of different targets in the limbic system.


Asunto(s)
Agresión , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Células Receptoras Sensoriales/metabolismo , Territorialidad , Órgano Vomeronasal/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo/fisiología , Mapeo Encefálico , Femenino , Eliminación de Gen , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Conducta Sexual Animal
5.
Proc Natl Acad Sci U S A ; 116(30): 15236-15243, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285329

RESUMEN

Dopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis. By analyzing female mice carrying targeted mutations in the Trpc5 gene including a conditional Trpc5 deletion, we show that Trpc5 is required for maintaining highly stereotyped infraslow membrane potential oscillations of dopamine ARC neurons. Trpc5 is also required for eliciting prolactin-evoked tonic plateau potentials in these neurons that are part of a regulatory feedback circuit. Trpc5 mutant females show severe prolactin deficiency or hypoprolactinemia that is associated with irregular reproductive cyclicity, gonadotropin imbalance, and impaired reproductive capabilities. These results reveal a previously unknown role for the cation channel Trpc5 in prolactin homeostasis of female mice and provide strategies to explore the genetic basis of reproductive disorders and other malfunctions associated with defective prolactin regulation in humans.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedades Genéticas Congénitas/genética , Trastornos de la Lactancia/genética , Prolactina/deficiencia , Prolactina/genética , Canales Catiónicos TRPC/genética , Animales , Núcleo Arqueado del Hipotálamo/patología , Nivel de Alerta/fisiología , Neuronas Dopaminérgicas/patología , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Gonadotropinas/sangre , Gonadotropinas/genética , Homeostasis/genética , Humanos , Trastornos de la Lactancia/metabolismo , Trastornos de la Lactancia/patología , Potenciales de la Membrana/fisiología , Ratones , Mutación , Prolactina/sangre , Prolactina/metabolismo , Reproducción/fisiología , Transducción de Señal , Canales Catiónicos TRPC/deficiencia
6.
Angew Chem Int Ed Engl ; 61(36): e202201565, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35713469

RESUMEN

Photoswitchable reagents can be powerful tools for high-precision biological control. TRPC5 is a Ca2+ -permeable cation channel with distinct tissue-specific roles, from synaptic function to hormone regulation. Reagents giving spatiotemporally-resolved control over TRPC5 activity may be key to understanding and harnessing its biology. Here we develop the first photoswitchable TRPC5-modulator, BTDAzo, to address this goal. BTDAzo can photocontrol TRPC5 currents in cell culture, as well as controlling endogenous TRPC5-based neuronal Ca2+ responses in mouse brain slices. BTDAzos are also the first reported azo-benzothiadiazines, an accessible and conveniently derivatised azoheteroarene with strong two-colour photoswitching. BTDAzo's ability to control TRPC5 across relevant channel biology settings makes it suitable for a range of dynamically reversible photoswitching studies in TRP channel biology, with the aim to decipher the various biological roles of this centrally important ion channel.


Asunto(s)
Neuronas , Canales Catiónicos TRPC , Animales , Calcio/metabolismo , Ratones , Neuronas/metabolismo
7.
Mol Cell Neurosci ; 105: 103495, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32298804

RESUMEN

The vomeronasal organ (VNO), the sensory organ of the mammalian accessory olfactory system, mediates the activation of sexually dimorphic reproductive behavioral and endocrine responses in males and females. It is unclear how sexually dimorphic and state-dependent responses are generated by vomeronasal sensory neurons (VSNs). Here, we report the expression of the transient receptor potential (TRP) channel Trpm4, a Ca2+-activated monovalent cation channel, as a second TRP channel present in mouse VSNs, in addition to the diacylglycerol-sensitive Trpc2 channel. The expression of Trpm4 in the mouse VNO is sexually dimorphic and, in females, is tightly linked to their reproductive cycle. We show that Trpm4 protein expression is upregulated specifically during proestrus and estrus, when female mice are about to ovulate and become sexually active and receptive. The cyclic regulation of Trpm4 expression in female VSNs depends on ovarian sex hormones and is abolished by surgical removal of the ovaries (OVX). Trpm4 upregulation can be restored in OVX mice by systemic treatment with 17ß-estradiol, requires endogenous activity of aromatase enzyme, and is strongly reduced during late pregnancy. This cyclic regulation of Trpm4 offers a neural mechanism by which female mice could regulate the relative strength of sensory signals in their VSNs, depending on hormonal state. Trpm4 is likely to participate in sex-specific, estrous cycle-dependent and sex hormone-regulated functions of the VNO, and may serve as a previously unknown genetic substrate for dissecting mammalian sexually dimorphic cellular and behavioral responses.


Asunto(s)
Ovario/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPM/metabolismo , Órgano Vomeronasal/metabolismo , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Diglicéridos/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo , Femenino , Masculino , Ratones , Canales Catiónicos TRPC/genética
8.
J Biol Chem ; 293(26): 10392-10403, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29769308

RESUMEN

Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. Although these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knockout mice irrespective of the presence of Ano2 The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knockout mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice.


Asunto(s)
Agresión , Canales de Cloruro/metabolismo , Fenómenos Electrofisiológicos , Neuronas/citología , Órgano Vomeronasal/fisiología , Animales , Anoctamina-1/metabolismo , Anoctaminas/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Órgano Vomeronasal/citología , Órgano Vomeronasal/metabolismo
9.
J Physiol ; 596(14): 2681-2698, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29368348

RESUMEN

KEY POINTS: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to eliminate cancer cells. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity and found that in particular CTLs have a very low optimum of [Ca2+ ]i (between 122 and 334 nm) and [Ca2+ ]o (between 23 and 625 µm) for efficient cancer cell elimination, well below blood plasma Ca2+ levels. As predicted from these results, partial down-regulation of the Ca2+ channel Orai1 in CTLs paradoxically increases perforin-dependent cancer cell killing. Lytic granule release at the immune synapse between CTLs and cancer cells has a Ca2+ optimum compatible with this low Ca2+ optimum for efficient cancer cell killing, whereas the Ca2+ optimum for CTL migration is slightly higher and proliferation increases monotonously with increasing [Ca2+ ]o . We propose that a partial inhibition of Ca2+ signals by specific Orai1 blockers at submaximal concentrations could contribute to tumour elimination. ABSTRACT: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to protect the human body against cancer. Ca2+ is a key metabolic factor for lymphocyte function and cancer homeostasis. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity against cancer cells and found that CTLs have a bell-shaped Ca2+ dependence with an optimum for cancer cell elimination at rather low [Ca2+ ]o (23-625 µm) and [Ca2+ ]i (122-334 nm). This finding predicts that a partial inhibition of Orai1 should increase (rather than decrease) cytotoxicity of CTLs at [Ca2+ ]o higher than 625 µm. We tested this hypothesis in CTLs and indeed found that partial down-regulation of Orai1 by siRNA increases the efficiency of cancer cell killing. We found two mechanisms that may account for the Ca2+ optimum of cancer cell killing: (1) migration velocity and persistence have a moderate optimum between 500 and 1000 µm [Ca2+ ]o in CTLs, and (2) lytic granule release at the immune synapse between CTLs and cancer cells is increased at 146 µm compared to 3 or 800 µm, compatible with the Ca2+ optimum for cancer cell killing. It has been demonstrated in many cancer cell types that Orai1-dependent Ca2+ signals enhance proliferation. We propose that a decrease of [Ca2+ ]o or partial inhibition of Orai1 activity by selective blockers in the tumour microenvironment could efficiently reduce cancer growth by simultaneously increasing CTL and NK cell cytotoxicity and decreasing cancer cell proliferation.


Asunto(s)
Apoptosis , Calcio/metabolismo , Proliferación Celular , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Movimiento Celular , Gránulos Citoplasmáticos/metabolismo , Humanos , Neoplasias/metabolismo , Perforina/metabolismo , Células Tumorales Cultivadas
10.
Mol Cell Neurosci ; 80: 75-88, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28188885

RESUMEN

The Ca2+-activated monovalent cation channel Trpm5 is a key element in chemotransduction of taste receptor cells of the tongue, but the extent to which Trpm5 channels are expressed in olfactory sensory neurons (OSNs) of the main olfactory epithelium (MOE) of adult mice as part of a specific pheromonal detection system is debated. Here, we used a novel Trpm5-IRES-Cre knockin strain to drive Cre recombinase expression, employed previously validated Trpm5 antibodies, performed in situ hybridization experiments to localize Trpm5 RNA, and searched extensively for Trpm5 splice variants in genetically-labeled, Trpm5-expressing MOE cells. In contrast to previous reports, we find no evidence for the existence in adult mouse OSNs of the classical Trpm5 channel known from taste cells. We show that Trpm5-expressing adult OSNs express a novel Trpm5 splice variant, Trpm5-9, that is unlikely to form a functional cation channel by itself. We also demonstrate that Trpm5 is transiently expressed in a subpopulation of mature OSNs in the embryonic olfactory epithelium, indicating that Trpm5 channels could play a specific role in utero during a narrow developmental time window. Ca2+ imaging with GCaMP3 under the control of the Trpm5-IRES-Cre allele using a newly developed MOE wholemount preparation of the adult olfactory epithelium reveals that Trpm5-GCaMP3 OSNs comprise a heterogeneous group of sensory neurons many of which can detect general odorants. Together, these studies are essential for understanding the role of transient receptor potential channels in mammalian olfaction.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Mucosa Olfatoria/metabolismo , Canales Catiónicos TRPM/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Calcio/metabolismo , Embrión de Mamíferos , Proteína GAP-43/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Mucosa Olfatoria/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , ARN Mensajero/metabolismo , Canales Catiónicos TRPM/genética , Órgano Vomeronasal/embriología , Órgano Vomeronasal/crecimiento & desarrollo , Órgano Vomeronasal/metabolismo
11.
J Biol Chem ; 291(18): 9762-75, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26957543

RESUMEN

Formyl peptide receptor 3 (Fpr3, also known as Fpr-rs1) is a G protein-coupled receptor expressed in subsets of sensory neurons of the mouse vomeronasal organ, an olfactory substructure essential for social recognition. Fpr3 has been implicated in the sensing of infection-associated olfactory cues, but its expression pattern and function are incompletely understood. To facilitate visualization of Fpr3-expressing cells, we generated and validated two new anti-Fpr3 antibodies enabling us to analyze acute Fpr3 protein expression. Fpr3 is not only expressed in murine vomeronasal sensory neurons but also in bone marrow cells, the primary source for immune cell renewal, and in mature neutrophils. Consistent with the notion that Fpr3 functions as a pathogen sensor, Fpr3 expression in the immune system is up-regulated after stimulation with a bacterial endotoxin (lipopolysaccharide). These results strongly support a dual role for Fpr3 in both vomeronasal sensory neurons and immune cells. We also identify a large panel of mouse strains with severely altered expression and function of Fpr3, thus establishing the existence of natural Fpr3 knock-out strains. We attribute distinct Fpr3 expression in these strains to the presence or absence of a 12-nucleotide in-frame deletion (Fpr3Δ424-435). In vitro calcium imaging and immunofluorescence analyses demonstrate that the lack of four amino acids leads to an unstable, truncated, and non-functional receptor protein. The genome of at least 19 strains encodes a non-functional Fpr3 variant, whereas at least 13 other strains express an intact receptor. These results provide a foundation for understanding the in vivo function of Fpr3.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Receptores de Formil Péptido/inmunología , Células Receptoras Sensoriales/inmunología , Órgano Vomeronasal/inmunología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Receptores de Formil Péptido/genética , Células Receptoras Sensoriales/citología , Especificidad de la Especie , Órgano Vomeronasal/citología
12.
Nature ; 472(7342): 186-90, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21441906

RESUMEN

Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Trastornos del Olfato/genética , Trastornos del Olfato/fisiopatología , Canales de Sodio/genética , Potenciales de Acción , Animales , Conducta Animal , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.7 , Odorantes/análisis , Trastornos del Olfato/congénito , Trastornos del Olfato/patología , Mucosa Olfatoria/citología , Mucosa Olfatoria/patología , Vías Olfatorias/metabolismo , Vías Olfatorias/patología , Vías Olfatorias/fisiopatología , Percepción Olfatoria/genética , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/patología , Dolor/genética , Dolor/fisiopatología , Fenotipo , Olfato/genética , Olfato/fisiología , Canales de Sodio/deficiencia , Canales de Sodio/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Orina/química
13.
J Biol Chem ; 290(12): 7369-87, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25605714

RESUMEN

Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system.


Asunto(s)
Bacterias/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Señales de Clasificación de Proteína , Receptores de Formil Péptido/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Células HEK293 , Humanos , Datos de Secuencia Molecular
14.
BMC Biol ; 13: 104, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26621367

RESUMEN

BACKGROUND: The hormonal state during the estrus cycle or pregnancy produces alterations on female olfactory perception that are accompanied by specific maternal behaviors, but it is unclear how sex hormones act on the olfactory system to enable these sensory changes. RESULTS: Herein, we show that the production of neuronal progenitors is stimulated in the vomeronasal organ (VNO) epithelium of female mice during a late phase of pregnancy. Using a wide range of molecular markers that cover the whole VNO cell maturation process in combination with Ca(2+) imaging in early postmitotic neurons, we show that newly generated VNO cells adopt morphological and functional properties of mature sensory neurons. A fraction of these newly generated cells project their axons to the olfactory forebrain, extend dendrites that contact the VNO lumen, and can detect peptides and urinary proteins shown to contain pheromone activity. High-throughput RNA-sequencing reveals concomitant differences in gene expression in the VNO transcriptomes of pregnant females. These include relative increases in expression of 20 vomeronasal receptors, of which 17 belong to the V1R subfamily, and may therefore be considered as candidate receptors for mediating maternal behaviors. We identify the expression of several hormone receptors in the VNO of which estrogen receptor α (Esr1) is directly localized to neural progenitors. Administration of sustained high levels of estrogen, but not progesterone, is sufficient to stimulate vomeronasal progenitor cell proliferation in the VNO epithelium. CONCLUSIONS: Peripheral olfactory neurogenesis driven by estrogen may contribute to modulate sensory perception and adaptive VNO-dependent behaviors during pregnancy and early motherhood.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Neurogénesis , Órgano Vomeronasal/fisiología , Animales , Proliferación Celular , Femenino , Ratones , Células-Madre Neurales/fisiología , Embarazo , Órgano Vomeronasal/crecimiento & desarrollo
15.
J Neurosci ; 34(15): 5121-33, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719092

RESUMEN

The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility complex genes. The in vivo, physiological roles of the H2-Mv gene family remain mysterious more than a decade after the discovery of combinatorial H2-Mv gene expression in VSNs. Here, we have taken a genetic approach and have deleted the 530 kb cluster of H2-Mv genes in the mouse germline by chromosome engineering. Homozygous mutant mice (ΔH2Mv mice) are viable and fertile. There are no major anatomical defects in their VNO and accessory olfactory bulb (AOB). Their VSNs can be stimulated with chemostimuli (peptides and proteins) to the same maximum responses as VSNs of wild-type mice, but require much higher concentrations. This physiological phenotype is displayed at the single-cell level and is cell autonomous: single V2rf2-expressing VSNs, which normally coexpress H2-Mv genes, display a decreased sensitivity to a peptide ligand in ΔH2Mv mice, whereas single V2r1b-expressing VSNs, which do not coexpress H2-Mv genes, show normal sensitivity to a peptide ligand in ΔH2Mv mice. Consistent with the greatly decreased VSN sensitivity, ΔH2Mv mice display pronounced deficits in aggressive and sexual behaviors. Thus, H2-Mv genes are not absolutely essential for the generation of physiological responses, but are required for ultrasensitive chemodetection by a subset of VSNs.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Genes MHC Clase I/genética , Olfato/genética , Órgano Vomeronasal/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Células Quimiorreceptoras/fisiología , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Umbral Sensorial , Conducta Sexual Animal , Órgano Vomeronasal/citología , Órgano Vomeronasal/fisiología
16.
Chem Senses ; 40(6): 413-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25940069

RESUMEN

Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a τGFP transgene. To confirm faithful coexpression of τGFP and TRPM5 we generated and validated a new anti-TRPM5 antiserum enabling us to analyze acute TRPM5 protein expression. τGFP cells were found in taste bud cells of the vallate, foliate, and fungiform papillae as well as in the palate. We also detected TRPM5 expression in several other tissues such as in the septal organ of Masera. Interestingly, in the olfactory epithelium of adult mice acute TRPM5 expression was detected in only one (short microvillar cells) of two cell populations previously reported to express TRPM5. The TRPM5-IC mouse strain described here represents a novel genetic tool and will facilitate the study and tissue-specific manipulation of TRPM5-expressing cells in vivo.


Asunto(s)
Canales Catiónicos TRPM/metabolismo , Alelos , Animales , Anticuerpos/inmunología , Femenino , Tracto Gastrointestinal/metabolismo , Técnicas de Sustitución del Gen , Genotipo , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucosa Olfatoria/metabolismo , Hueso Paladar/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/inmunología , Papilas Gustativas/metabolismo , Lengua/metabolismo
17.
BMC Biol ; 12: 31, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24886577

RESUMEN

BACKGROUND: Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS: To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS: These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Feromonas/farmacología , Reproducción/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Conducta de Elección/efectos de los fármacos , Ciclo Estral/efectos de los fármacos , Femenino , Eliminación de Gen , Genes Reporteros , Hormonas Esteroides Gonadales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ovario/patología , Postura , Maduración Sexual/efectos de los fármacos , Olfato/efectos de los fármacos
18.
Eur J Neurosci ; 40(10): 3422-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25195871

RESUMEN

We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Bulbo Olfatorio/fisiología , Transmisión Sináptica/fisiología , Órgano Vomeronasal/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Proteína Marcadora Olfativa/metabolismo , Nervio Olfatorio/efectos de los fármacos , Nervio Olfatorio/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de Tejidos , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Órgano Vomeronasal/efectos de los fármacos , Órgano Vomeronasal/inervación
19.
Handb Exp Pharmacol ; 223: 917-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24961974

RESUMEN

The mammalian olfactory system has become an excellent model system to understand the function of transient receptor potential (TRP) channels within their native cellular and circuit environment. The discovery that the canonical TRP channel TRPC2 is highly expressed in sensory neurons of the vomeronasal organ (VNO) has led to major advances in our understanding of the cellular and molecular processes underlying signal transduction of pheromones and other molecular cues that play an essential role in the control of instinctive decisions and innate social behaviors. TRPC2 knockout mice provide a striking example that the loss of function of a single gene can cause severe alterations in a variety of social interactions including the display of aggression, social dominance, and sexual behaviors. There is mounting evidence that TRPC2 is not the only TRP channel expressed in cells of the olfactory system but that other TRP channel subtypes such as TRPC1, TRPC4, TRPC6, TRPM4, and TRPM5 could also play important functional roles in mammalian olfaction. Here, I review such findings and discuss future areas for investigation.


Asunto(s)
Olfato/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Humanos , Bulbo Olfatorio/fisiología , Transducción de Señal/fisiología
20.
Proc Natl Acad Sci U S A ; 108(31): 12898-903, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768373

RESUMEN

The rodent vomeronasal organ (VNO) mediates the regulation of species-specific and interspecies social behaviors. We have used gene targeting to examine the role of the G protein Gαo, encoded by the gene Gnao1, in vomeronasal function. We used the Cre-loxP system to delete Gαo in those cells that express olfactory marker protein, which includes all vomeronasal sensory neurons of the basal layer of the VNO sensory epithelium. Using electrophysiology and calcium imaging, we show that the conditional null mice exhibit strikingly reduced sensory responses in V2R receptor-expressing vomeronasal sensory neurons to specific molecular cues, including MHC1 antigens, major urinary proteins, and exocrine gland-secreting peptide. Gαo is also vital for vomeronasal sensing of two N-formylated mitochondrially encoded peptides derived from NADH dehydrogenase 1. Furthermore, we show that Gαo is an essential requirement for the display of male-male territorial aggression as well as maternal aggression in mice. Finally, we show that Gαo-dependent maternal aggression can be induced by major urinary proteins. These cellular and behavioral phenotypes identify Gαo as the primary G-protein α-subunit mediating the detection of peptide and protein pheromones by sensory neurons of the VNO.


Asunto(s)
Agresión/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Células Receptoras Sensoriales/fisiología , Órgano Vomeronasal/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calcio/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Expresión Génica , Habituación Psicofisiológica/fisiología , Inmunohistoquímica , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Odorantes , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Embarazo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Receptoras Sensoriales/metabolismo , Órgano Vomeronasal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA