Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Anaesthesiol ; 34(8): 534-543, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28306591

RESUMEN

BACKGROUND: Invasive mechanical ventilation during general anaesthesia for surgery typically causes atelectasis and impairs postoperative lung function. OBJECTIVE: We investigated the effect of intraoperative ventilation with high positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RMs) on postoperative spirometry. DESIGN: This was a preplanned, single-centre substudy of an international multicentre randomised controlled trial, the PROVHILO trial. SETTING: University hospital from November 2011 to January 2013. PATIENTS: Nonobese patients scheduled for major abdominal surgery at a high risk of postoperative pulmonary complications (PPCs). INTERVENTION: Intraoperative low tidal volume ventilation with PEEP levels of 12 cmH2O and RM (the high PEEP group) or with PEEP levels of 2 cmH2O or less without RM (the low PEEP group). MAIN OUTCOME MEASURES: Time-weighted averages (TWAs) of the forced expiratory volume in 1 s (FEV1) and the forced vital capacity (FVC) up to postoperative day five. RESULTS: Thirty-one patients were allocated to the high PEEP group and 32 to the low PEEP group. No postoperative spirometry test results were available for 6 patients. In both groups, TWA of FEV1 and FVC until postoperative day five were lower than preoperative values. Postoperative spirometry test results were not different between the high and low PEEP group; Data are median [interquartile range], TWA FVC 1.8 [1.6 to 2.4] versus 1.7 [1.2 to 2.4] l (P = NS) and TWA FEV1 1.2 [1.1 to 2.5] versus 1.2 [0.9 to 1.9] l (P = NS). Patients who developed PPCs had lower FEV1 and FVC on postoperative day five; 1.1 [0.9 to 1.6] versus 1.6 [1.4 to 1.9] l (P = 0.001) and 1.6 [1.2 to 2.6] versus 2.3 [1.7 to 2.6] l (P = 0.036), respectively. CONCLUSION: Postoperative spirometry is not affected by PEEP and RM during intraoperative ventilation for open abdominal surgery in nonobese patients at a high risk of PPCs, but rather is associated with the development of PPCs. TRIAL REGISTRATION: ClinicalTrials.gov NCT01441791.


Asunto(s)
Anestesia General/métodos , Cuidados Intraoperatorios/métodos , Respiración con Presión Positiva/métodos , Complicaciones Posoperatorias/epidemiología , Espirometría/métodos , Abdomen/cirugía , Adulto , Anciano , Anestesia General/efectos adversos , Femenino , Humanos , Internacionalidad , Cuidados Intraoperatorios/efectos adversos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva/efectos adversos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/fisiopatología , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Espirometría/efectos adversos , Volumen de Ventilación Pulmonar/fisiología
2.
PLoS One ; 16(8): e0256021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34415935

RESUMEN

BACKGROUND: We hypothesized that a decrease in frequency of controlled breaths during biphasic positive airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild experimental acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS: Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, animals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%: Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh reference value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O. Nonventilated animals were used for lung and diaphragm histology and molecular biology analysis. RESULTS: BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar damage (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary peak pressure (Ppeak,L) and pressure-time product per minute (PTPmin) at Phigh were associated with lung damage, while increased spontaneous breathing at Plow did not promote lung injury. CONCLUSION: In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at Plow and Phigh is required to minimize VILI.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua/métodos , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Aguda/patología , Animales , Diafragma/patología , Endotelio/patología , Pulmón/patología , Masculino , Ratas , Ratas Wistar , Respiración , Síndrome de Dificultad Respiratoria/fisiopatología , Volumen de Ventilación Pulmonar/fisiología
4.
Front Physiol ; 9: 905, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050467

RESUMEN

In experimental acute respiratory distress syndrome (ARDS), random variation of tidal volumes (VT ) during volume controlled ventilation improves gas exchange and respiratory system mechanics (so-called stochastic resonance hypothesis). It is unknown whether those positive effects may be further enhanced by periodic VT fluctuation at distinct frequencies, also known as deterministic frequency resonance. We hypothesized that the positive effects of variable ventilation on lung function may be further amplified by periodic VT fluctuation at specific frequencies. In anesthetized and mechanically ventilated pigs, severe ARDS was induced by saline lung lavage and injurious VT (double-hit model). Animals were then randomly assigned to 6 h of protective ventilation with one of four VT patterns: (1) random variation of VT (WN); (2) P04, main VT frequency of 0.13 Hz; (3) P10, main VT frequency of 0.05 Hz; (4) VCV, conventional non-variable volume controlled ventilation. In groups with variable VT , the coefficient of variation was identical (30%). We assessed lung mechanics and gas exchange, and determined lung histology and inflammation. Compared to VCV, WN, P04, and P10 resulted in lower respiratory system elastance (63 ± 13 cm H2O/L vs. 50 ± 14 cm H2O/L, 48.4 ± 21 cm H2O/L, and 45.1 ± 5.9 cm H2O/L respectively, P < 0.05 all), but only P10 improved PaO2/FIO2 after 6 h of ventilation (318 ± 96 vs. 445 ± 110 mm Hg, P < 0.05). Cycle-by-cycle analysis of lung mechanics suggested intertidal recruitment/de-recruitment in P10. Lung histologic damage and inflammation did not differ among groups. In this experimental model of severe ARDS, periodic VT fluctuation at a frequency of 0.05 Hz improved oxygenation during variable ventilation, suggesting that deterministic resonance adds further benefit to variable ventilation.

5.
Front Physiol ; 9: 318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670537

RESUMEN

Tidal volume (VT) has been considered the main determinant of ventilator-induced lung injury (VILI). Recently, experimental studies have suggested that mechanical power transferred from the ventilator to the lungs is the promoter of VILI. We hypothesized that, as long as mechanical power is kept below a safe threshold, high VT should not be injurious. The present study aimed to investigate the impact of different VT levels and respiratory rates (RR) on lung function, diffuse alveolar damage (DAD), alveolar ultrastructure, and expression of genes related to inflammation [interleukin (IL)-6], alveolar stretch (amphiregulin), epithelial [club cell secretory protein (CC)16] and endothelial [intercellular adhesion molecule (ICAM)-1] cell injury, and extracellular matrix damage [syndecan-1, decorin, and metalloproteinase (MMP)-9] in experimental acute respiratory distress syndrome (ARDS) under low-power mechanical ventilation. Twenty-eight Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 21 animals were randomly assigned to ventilation (2 h) with low mechanical power at three different VT levels (n = 7/group): (1) VT = 6 mL/kg and RR adjusted to normocapnia; (2) VT = 13 mL/kg; and 3) VT = 22 mL/kg. In the second and third groups, RR was adjusted to yield low mechanical power comparable to that of the first group. Mechanical power was calculated as [(Δ[Formula: see text]/Est,L)/2]× RR (ΔP,L = transpulmonary driving pressure, Est,L = static lung elastance). Seven rats were not mechanically ventilated (NV) and were used for molecular biology analysis. Mechanical power was comparable among groups, while VT gradually increased. ΔP,L and mechanical energy were higher in VT = 22 mL/kg than VT = 6 mL/kg and VT = 13 mL/kg (p < 0.001 for both). Accordingly, DAD score increased in VT = 22 mL/kg compared to VT = 6 mL/kg and VT = 13 mL/kg [23(18.5-24.75) vs. 16(12-17.75) and 16(13.25-18), p < 0.05, respectively]. VT = 22 mL/kg was associated with higher IL-6, amphiregulin, CC16, MMP-9, and syndecan-1 mRNA expression and lower decorin expression than VT = 6 mL/kg. Multiple linear regression analyses indicated that VT was able to predict changes in IL-6 and CC16, whereas ΔP,L predicted pHa, oxygenation, amphiregulin, and syndecan-1 expression. In the model of ARDS used herein, even at low mechanical power, high VT resulted in VILI. VT control seems to be more important than RR control to mitigate VILI.

6.
Front Physiol ; 7: 277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445862

RESUMEN

Emphysema is characterized by loss of lung tissue elasticity and destruction of structures supporting alveoli and capillaries. The impact of mechanical ventilation strategies on ventilator-induced lung injury (VILI) in emphysema is poorly defined. New ventilator strategies should be developed to minimize VILI in emphysema. The present study was divided into two protocols: (1) characterization of an elastase-induced emphysema model in rats and identification of the time point of greatest cardiorespiratory impairment, defined as a high specific lung elastance associated with large right ventricular end-diastolic area; and (2) comparison between variable (VV) and conventional volume-controlled ventilation (VCV) on lung mechanics and morphometry, biological markers, and cardiac function at that time point. In the first protocol, Wistar rats (n = 62) received saline (SAL) or porcine pancreatic elastase (ELA) intratracheally once weekly for 4 weeks, respectively. Evaluations were performed 1, 3, 5, or 8 weeks after the last intratracheal instillation of saline or elastase. After identifying the time point of greatest cardiorespiratory impairment, an additional 32 Wistar rats were randomized into the SAL and ELA groups and then ventilated with VV or VCV (n = 8/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 3 cmH2O, fraction of inspired oxygen (FiO2) = 0.4] for 2 h. VV was applied on a breath-to-breath basis as a sequence of randomly generated VT values (mean VT = 6 mL/kg), with a 30% coefficient of variation. Non-ventilated (NV) SAL and ELA animals were used for molecular biology analysis. The time point of greatest cardiorespiratory impairment, was observed 5 weeks after the last elastase instillation. At this time point, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant (CINC)-1, amphiregulin, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF) mRNA levels were higher in ELA compared to SAL. In ELA animals, VV reduced respiratory system elastance, alveolar collapse, and hyperinflation compared to VCV, without significant differences in gas exchange, but increased right ventricular diastolic area. Interleukin-6 mRNA expression was higher in VCV and VV than NV, while surfactant protein-D was increased in VV compared to NV. In conclusion, VV improved lung function and morphology and reduced VILI, but impaired right cardiac function in this model of elastase induced-emphysema.

7.
Nucl Med Commun ; 35(5): 501-10, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24509518

RESUMEN

INTRODUCTION: The aims of this study were to determine the quantitative parameters of ventilation (V) and perfusion (Q) PET scans assessing V/Q quotients in patients with various lung pathologies, as well as the influence of patient position on regional perfusion patterns. METHODS: Fifty-three patients (24 male and 29 female) underwent lung scintigraphy with (68)Ga-labelled radiopharmaceuticals. (68)Ga Galligas and B20 microspheres used for V and Q imaging were produced in-house. Images were acquired under a standard setup with two emission scans of the whole lung in the supine (S) position (acquisition time 3 min/bed position) on a PET/CT scanner combined with low-dose computed tomography (CT) for attenuation correction. In 27 patients the Q scan was repeated in the prone (P) position. Parametric images were calculated (V/Q, P/S when applicable) for each patient. Patients were grouped according to diagnostic findings, and V/Q ratio distributions were further analysed. Gradients of the regional blood flow in both the supine and prone position were calculated. RESULTS: The results from visual interpretation could be confirmed with parametric images. Voxel-wise V/Q analysis revealed significant differences in descriptive parameters such as median, mean and SD between normal patients and patients with acute and previous pulmonary embolism. Skewness and kurtosis were not significantly different. The effect of gravitation could be demonstrated by significant position-dependent changes of the gradients in the ventral-dorsal and apical-basal directions. CONCLUSION: PET/CT using (68)Ga-labelled tracers allows the application of quantitative procedures to improve functional pulmonary imaging in clinical diagnosis and research.


Asunto(s)
Tomografía de Emisión de Positrones , Relación Ventilacion-Perfusión , Adulto , Anciano , Anciano de 80 o más Años , Radioisótopos de Galio , Humanos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Posición Prona , Trazadores Radiactivos , Estudios Retrospectivos , Posición Supina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA