Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2317945121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889154

RESUMEN

Chaperone-mediated autophagy (CMA) is part of the mammalian cellular proteostasis network that ensures protein quality control, maintenance of proteome homeostasis, and proteome changes required for the adaptation to stress. Loss of proteostasis is one of the hallmarks of aging. CMA decreases with age in multiple rodent tissues and human cell types. A decrease in lysosomal levels of the lysosome-associated membrane protein type 2A (LAMP2A), the CMA receptor, has been identified as a main reason for declined CMA in aging. Here, we report constitutive activation of CMA with calorie restriction (CR), an intervention that extends healthspan, in old rodent livers and in an in vitro model of CR with cultured fibroblasts. We found that CR-mediated upregulation of CMA is due to improved stability of LAMP2A at the lysosome membrane. We also explore the translational value of our observations using calorie-restriction mimetics (CRMs), pharmacologically active substances that reproduce the biochemical and functional effects of CR. We show that acute treatment of old mice with CRMs also robustly activates CMA in several tissues and that this activation is required for the higher resistance to lipid dietary challenges conferred by treatment with CRMs. We conclude that part of the beneficial effects associated with CR/CRMs could be a consequence of the constitutive activation of CMA mediated by these interventions.


Asunto(s)
Restricción Calórica , Autofagia Mediada por Chaperones , Proteína 2 de la Membrana Asociada a los Lisosomas , Lisosomas , Animales , Ratones , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Lisosomas/metabolismo , Humanos , Envejecimiento/metabolismo , Fibroblastos/metabolismo , Proteostasis , Hígado/metabolismo , Ratones Endogámicos C57BL , Masculino , Autofagia
2.
PLoS One ; 19(2): e0297555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335173

RESUMEN

Diabetes mellitus is characterized by insulin resistance and ß-cell failure. The latter involves impaired insulin secretion and ß-cell dedifferentiation. Sulfonylurea (SU) is used to improve insulin secretion in diabetes, but it suffers from secondary failure. The relationship between SU secondary failure and ß-cell dedifferentiation has not been examined. Using a model of SU secondary failure, we have previously shown that functional loss of oxidoreductase Cyb5r3 mediates effects of SU failure through interactions with glucokinase. Here we demonstrate that SU failure is associated with partial ß-cell dedifferentiation. Cyb5r3 knockout mice show more pronounced ß-cell dedifferentiation and glucose intolerance after chronic SU administration, high-fat diet feeding, and during aging. A Cyb5r3 activator improves impaired insulin secretion caused by chronic SU treatment, but not ß-cell dedifferentiation. We conclude that chronic SU administration affects progression of ß-cell dedifferentiation and that Cyb5r3 activation reverses secondary failure to SU without restoring ß-cell dedifferentiation.


Asunto(s)
Citocromo-B(5) Reductasa , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Ratones , Desdiferenciación Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina/farmacología , Compuestos de Sulfonilurea/farmacología , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo
3.
Mol Aspects Med ; 99: 101293, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059039

RESUMEN

Cancer-associated cachexia represents a multifactorial syndrome mainly characterized by muscle mass loss, which causes both a decrease in quality of life and anti-cancer therapy failure, among other consequences. The definition and diagnostic criteria of cachexia have changed and improved over time, including three different stages (pre-cachexia, cachexia, and refractory cachexia) and objective diagnostic markers. This metabolic wasting syndrome is characterized by a negative protein balance, and anti-cancer drugs like chemotherapy or immunotherapy exacerbate it through relatively unknown mechanisms. Due to its complexity, cachexia management involves a multidisciplinary strategy including not only nutritional and pharmacological interventions. Physical exercise has been proposed as a strategy to counteract the effects of cachexia on skeletal muscle, as it influences the mechanisms involved in the disease such as protein turnover, inflammation, oxidative stress, and mitochondrial dysfunction. This review will summarize the experimental and clinical evidence of the impact of physical exercise on cancer-associated cachexia.

4.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459068

RESUMEN

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
6.
Free Radic Biol Med ; 223: 69-86, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069267

RESUMEN

There is a pressing need to develop new strategies for enhancing health in the elderly and preventing the rise in age-related diseases. Calorie restriction without malnutrition (CR) stands among the different antiaging interventions. Lifelong CR leads to increased expression and activity of plasma membrane CYB5R3, and male mice overexpressing CYB5R3 exhibit some beneficial adaptations that are also seen with CR. However, the mechanisms involved in both interventions could be independent since key aspects of energy metabolism and tissue lipid profile do not coincide, and many of the changes induced by CR in mitochondrial abundance and dynamics in the liver and skeletal muscle could be counteracted by CYB5R3 overexpression. In this study, we sought to elucidate the impact of CR on key markers of metabolic status, mitochondrial function, and pro-oxidant/antioxidant balance in transgenic (TG) female mice overexpressing CYB5R3 compared to their WT littermates. In females fed ad libitum, CYB5R3 overexpression decreased fat mass, led to a preferred utilization of fatty acids as an energy source, upregulated key antioxidant enzymes, and boosted respiration both in skeletal muscle and liver mitochondria, supporting that CYB5R3 overexpression is phenotypic closer to CR in females than in males. Whereas some markers of mitochondrial biogenesis and dynamics were found decreased in TG females on CR, as also found for the levels of Estrogen Receptor α, mitochondrial abundance and activity were maintained both in skeletal muscle and in liver. Our results reveal overlapping metabolic adaptations resulting from the overexpression of CYB5R3 and CR in females, but a specific crosstalk occurs when both interventions are combined, differing from the adaptations observed in TG males.

7.
Nat Commun ; 15(1): 6357, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069555

RESUMEN

DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.


Asunto(s)
5-Metilcitosina , Envejecimiento , Cerebelo , Metilación de ADN , Hígado , Animales , Envejecimiento/genética , Envejecimiento/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Hígado/metabolismo , Ratones , Humanos , Cerebelo/metabolismo , Ratones Endogámicos C57BL , Longevidad/genética , Masculino , Empalme Alternativo , Transcripción Genética , Femenino , Regulación de la Expresión Génica
8.
Nat Aging ; 4(8): 1102-1120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849535

RESUMEN

The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.


Asunto(s)
Inflamación , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Mieloides , Transducción de Señal , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Inflamación/patología , Inflamación/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Nutrientes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
9.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979132

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is essential for many enzymatic reactions, including those involved in energy metabolism, DNA repair and the activity of sirtuins, a family of defensive deacylases. During aging, levels of NAD + can decrease by up to 50% in some tissues, the repletion of which provides a range of health benefits in both mice and humans. Whether or not the NAD + precursor nicotinamide mononucleotide (NMN) extends lifespan in mammals is not known. Here we investigate the effect of long-term administration of NMN on the health, cancer burden, frailty and lifespan of male and female mice. Without increasing tumor counts or severity in any tissue, NMN treatment of males and females increased activity, maintained more youthful gene expression patterns, and reduced overall frailty. Reduced frailty with NMN treatment was associated with increases in levels of Anerotruncus colihominis, a gut bacterium associated with lower inflammation in mice and increased longevity in humans. NMN slowed the accumulation of adipose tissue later in life and improved metabolic health in male but not female mice, while in females but not males, NMN increased median lifespan by 8.5%, possible due to sex-specific effects of NMN on NAD + metabolism. Together, these data show that chronic NMN treatment delays frailty, alters the microbiome, improves male metabolic health, and increases female mouse lifespan, without increasing cancer burden. These results highlight the potential of NAD + boosters for treating age-related conditions and the importance of using both sexes for interventional lifespan studies.

10.
Cell Metab ; 36(8): 1779-1794.e4, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39059384

RESUMEN

Although fasting is increasingly applied for disease prevention and treatment, consensus on terminology is lacking. Using Delphi methodology, an international, multidisciplinary panel of researchers and clinicians standardized definitions of various fasting approaches in humans. Five online surveys and a live online conference were conducted with 38 experts, 25 of whom completed all 5 surveys. Consensus was achieved for the following terms: "fasting" (voluntary abstinence from some or all foods or foods and beverages), "modified fasting" (restriction of energy intake to max. 25% of energy needs), "fluid-only fasting," "alternate-day fasting," "short-term fasting" (lasting 2-3 days), "prolonged fasting" (≥4 consecutive days), and "religious fasting." "Intermittent fasting" (repetitive fasting periods lasting ≤48 h), "time-restricted eating," and "fasting-mimicking diet" were discussed most. This study provides expert recommendations on fasting terminology for future research and clinical applications, facilitating communication and cross-referencing in the field.


Asunto(s)
Consenso , Ayuno , Terminología como Asunto , Ayuno/fisiología , Humanos , Técnica Delphi
11.
Nat Cell Biol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117797

RESUMEN

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.

12.
Aging Biol ; 12023.
Artículo en Inglés | MEDLINE | ID: mdl-38500537

RESUMEN

On April 28th, 2022, a group of scientific leaders gathered virtually to discuss molecular and cellular mechanisms of responses to stress. Conditions of acute, high-intensity stress are well documented to induce a series of adaptive responses that aim to promote survival until the stress has dissipated and then guide recovery. However, high-intensity or persistent stress that goes beyond the cell's compensatory capacity are countered with resilience strategies that are not completely understood. These adaptative strategies, which are an essential component of the study of aging biology, were the theme of the meeting. Specific topics discussed included mechanisms of proteostasis, such as the unfolded protein response (UPR) and the integrated stress response (ISR), as well as mitochondrial stress and lysosomal stress responses. Attention was also given to regulatory mechanisms and associated biological processes linked to age-related conditions, such as muscle loss and regeneration, cancer, senescence, sleep quality, and degenerative disease, with a general focus on the relevance of stress responses to frailty. We summarize the concepts and potential future directions that emerged from the discussion and highlight their relevance to the study of aging and age-related chronic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA