Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 20(5): e1012176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709846

RESUMEN

Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Enfermedades de las Plantas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Modelos Moleculares , Conformación Proteica , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos
2.
Molecules ; 28(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37630320

RESUMEN

Does a similar 3D structure mean a similar folding pathway? This question is particularly meaningful when it concerns proteins sharing a similar 3D structure, but low sequence identity or homology. MAX effectors secreted by the phytopathogenic fungus Magnaporthe oryzae present such characteristics. They share a common 3D structure, a ß-sandwich with the same topology for all the family members, but an extremely low sequence identity/homology. In a previous study, we have investigated the folding of two MAX effectors, AVR-Pia and AVR-Pib, using High-Hydrostatic-Pressure NMR and found that they display a similar folding pathway, with a common folding intermediate. In the present work, we used a similar strategy to investigate the folding conformational landscape of another MAX effector, MAX60, and found a very different folding intermediate. Our analysis strongly supports that the presence of a C-terminal α-helical extension in the 3D structure of MAX60 could be responsible for its different folding pathway.


Asunto(s)
Ascomicetos , Transporte Biológico , Presión Hidrostática , Pliegue de Proteína , Proteínas Fúngicas
3.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628267

RESUMEN

Despite advances in experimental and computational methods, the mechanisms by which an unstructured polypeptide chain regains its unique three-dimensional structure remains one of the main puzzling questions in biology. Single-molecule techniques, ultra-fast perturbation and detection approaches and improvement in all-atom and coarse-grained simulation methods have greatly deepened our understanding of protein folding and the effects of environmental factors on folding landscape. However, a major challenge remains the detailed characterization of the protein folding landscape. Here, we used high hydrostatic pressure 2D NMR spectroscopy to obtain high-resolution experimental structural information in a site-specific manner across the polypeptide sequence and along the folding reaction coordinate. We used this residue-specific information to constrain Cyana3 calculations, in order to obtain a topological description of the entire folding landscape. This approach was used to describe the conformers populating the folding landscape of two small globular proteins, AVR-Pia and AVR-Pib, that belong to the structurally conserved but sequence-unrelated MAX effectors superfamily. Comparing the two folding landscapes, we found that, in spite of their divergent sequences, the folding pathway of these two proteins involves a similar, inescapable, folding intermediate, even if, statistically, the routes used are different.


Asunto(s)
Ascomicetos , Pliegue de Proteína , Espectroscopía de Resonancia Magnética , Proteínas/química
4.
Proc Natl Acad Sci U S A ; 115(45): 11637-11642, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30355769

RESUMEN

The structurally conserved but sequence-unrelated MAX (Magnaporthe oryzae avirulence and ToxB-like) effectors AVR1-CO39 and AVR-PikD from the blast fungus M. oryzae are recognized by the rice nucleotide-binding domain and leucine-rich repeat proteins (NLRs) RGA5 and Pikp-1, respectively. This involves, in both cases, direct interaction of the effector with a heavy metal-associated (HMA) integrated domain (ID) in the NLR. Here, we solved the crystal structures of a C-terminal fragment of RGA5 carrying the HMA ID (RGA5_S), alone, and in complex with AVR1-CO39 and compared it to the structure of the Pikp1HMA/AVR-PikD complex. In both complexes, HMA ID/MAX effector interactions involve antiparallel alignment of ß-sheets from each partner. However, effector-binding occurs at different surfaces in Pikp1HMA and RGA5HMA, indicating that these interactions evolved independently by convergence of these two MAX effectors to the same type of plant target proteins. Interestingly, the effector-binding surface in RGA5HMA overlaps with the surface that mediates RGA5HMA self-interaction. Mutations in the HMA-binding interface of AVR1-CO39 perturb RGA5HMA-binding, in vitro and in vivo, and affect the recognition of M. oryzae in a rice cultivar containing Pi-CO39 Our study provides detailed insight into the mechanisms of effector recognition by NLRs, which has substantial implications for future engineering of NLRs to expand their recognition specificities. In addition, we propose, as a hypothesis for the understanding of effector diversity, that in the structurally conserved MAX effectors the molecular mechanism of host target protein-binding is conserved rather than the host target proteins themselves.


Asunto(s)
Proteínas Fúngicas/química , Magnaporthe/genética , Proteínas NLR/química , Oryza/inmunología , Proteínas de Plantas/química , Factores de Virulencia/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Magnaporthe/patogenicidad , Modelos Moleculares , Proteínas NLR/genética , Proteínas NLR/inmunología , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Plant Cell ; 29(1): 156-168, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087830

RESUMEN

Nucleotide binding domain and leucine-rich repeat proteins (NLRs) are important receptors in plant immunity that allow recognition of pathogen effectors. The rice (Oryza sativa) NLR RGA5 recognizes the Magnaporthe oryzae effector AVR-Pia through direct interaction. Here, we gained detailed insights into the molecular and structural bases of AVR-Pia-RGA5 interaction and the role of the RATX1 decoy domain of RGA5. NMR titration combined with in vitro and in vivo protein-protein interaction analyses identified the AVR-Pia interaction surface that binds to the RATX1 domain. Structure-informed AVR-Pia mutants showed that, although AVR-Pia associates with additional sites in RGA5, binding to the RATX1 domain is necessary for pathogen recognition but can be of moderate affinity. Therefore, RGA5-mediated resistance is highly resilient to mutations in the effector. We propose a model that explains such robust effector recognition as a consequence, and an advantage, of the combination of integrated decoy domains with additional independent effector-NLR interactions.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Sitios de Unión/genética , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Magnaporthe/fisiología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Dominios Proteicos , Receptores Inmunológicos/química , Receptores Inmunológicos/genética
6.
PLoS Pathog ; 11(10): e1005228, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26506000

RESUMEN

Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 ß-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.


Asunto(s)
Ascomicetos/química , Secuencia de Aminoácidos , Ascomicetos/patogenicidad , Proteínas Fúngicas/química , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
7.
Proteomics ; 15(1): 114-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359407

RESUMEN

ORFans are hypothetical proteins lacking any significant sequence similarity with other proteins. Here, we highlighted by quantitative proteomics the TGAM_1934 ORFan from the hyperradioresistant Thermococcus gammatolerans archaeon as one of the most abundant hypothetical proteins. This protein has been selected as a priority target for structure determination on the basis of its abundance in three cellular conditions. Its solution structure has been determined using multidimensional heteronuclear NMR spectroscopy. TGAM_1934 displays an original fold, although sharing some similarities with the 3D structure of the bacterial ortholog of frataxin, CyaY, a protein conserved in bacteria and eukaryotes and involved in iron-sulfur cluster biogenesis. These results highlight the potential of structural proteomics in prioritizing ORFan targets for structure determination based on quantitative proteomics data. The proteomic data and structure coordinates have been deposited to the ProteomeXchange with identifier PXD000402 (http://proteomecentral.proteomexchange.org/dataset/PXD000402) and Protein Data Bank under the accession number 2mcf, respectively.


Asunto(s)
Proteínas Arqueales/química , Thermococcus/química , Secuencia de Aminoácidos , Proteínas de Unión a Hierro/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteómica , Frataxina
8.
Biomol NMR Assign ; 16(2): 305-309, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35657473

RESUMEN

Effectors are small and very diverse proteins secreted by fungi and translocated in plant cells during infection. Among them, MAX effectors (for Magnaporthe Avrs and ToxB) were identified as a family of effectors that share an identical fold topology despite having highly divergent sequences. They are mostly secreted by ascomycetes from the Magnaporthe genus, a fungus that causes the rice blast, a plant disease leading to huge crop losses. As rice is the first source of calories in many countries, especially in Asia and Africa, this constitutes a threat for world food security. Hence, a better understanding of these effectors, including structural and functional characterization, constitutes a strategic milestone in the fight against phytopathogen fungi and may give clues for the development of resistant varieties of rice. We report here the near complete 1H, 15 N and 13C NMR resonance assignment of three new putative MAX effectors (MAX47, MAX60 and MAX67). Secondary structure determination using TALOS-N and CSI.3 demonstrates a high content of ß-strands in all the three proteins, in agreement with the canonic ß-sandwich structure of MAX effectors. This preliminary study provides foundations for further structural characterization, that will help in turn to improve sequence predictions of other MAX effectors through data mining.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/metabolismo , Proteínas Fúngicas/química , Magnaporthe/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oryza/metabolismo , Oryza/microbiología
9.
Nat Commun ; 13(1): 1524, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314704

RESUMEN

Plant nucleotide-binding and leucine-rich repeat domain proteins (NLRs) are immune sensors that recognize pathogen effectors. Here, we show that molecular engineering of the integrated decoy domain (ID) of an NLR can extend its recognition spectrum to a new effector. We relied for this on detailed knowledge on the recognition of the Magnaporthe oryzae effectors AVR-PikD, AVR-Pia, and AVR1-CO39 by, respectively, the rice NLRs Pikp-1 and RGA5. Both receptors detect their effectors through physical binding to their HMA (Heavy Metal-Associated) IDs. By introducing into RGA5_HMA the AVR-PikD binding residues of Pikp-1_HMA, we create a high-affinity binding surface for this effector. RGA5 variants carrying this engineered binding surface perceive the new ligand, AVR-PikD, and still recognize AVR-Pia and AVR1-CO39 in the model plant N. benthamiana. However, they do not confer extended disease resistance specificity against M. oryzae in transgenic rice plants. Altogether, our study provides a proof of concept for the design of new effector recognition specificities in NLRs through molecular engineering of IDs.


Asunto(s)
Magnaporthe , Oryza , Interacciones Huésped-Patógeno , Proteínas NLR/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Receptores Inmunológicos/metabolismo
10.
Proteins ; 79(4): 1293-305, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21254234

RESUMEN

The ionization of internal groups in proteins can trigger conformational change. Despite this being the structural basis of most biological energy transduction, these processes are poorly understood. Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy experiments at ambient and high hydrostatic pressure were used to examine how the presence and ionization of Lys-66, buried in the hydrophobic core of a stabilized variant of staphylococcal nuclease, affect conformation and dynamics. NMR spectroscopy at atmospheric pressure showed previously that the neutral Lys-66 affects slow conformational fluctuations globally, whereas the effects of the charged form are localized to the region immediately surrounding position 66. Ab initio models from SAXS data suggest that when Lys-66 is charged the protein expands, which is consistent with results from NMR spectroscopy. The application of moderate pressure (<2 kbar) at pH values where Lys-66 is normally neutral at ambient pressure left most of the structure unperturbed but produced significant nonlinear changes in chemical shifts in the helix where Lys-66 is located. Above 2 kbar pressure at these pH values the protein with Lys-66 unfolded cooperatively adopting a relatively compact, albeit random structure according to Kratky analysis of the SAXS data. In contrast, at low pH and high pressure the unfolded state of the variant with Lys-66 is more expanded than that of the reference protein. The combined global and local view of the structural reorganization triggered by ionization of the internal Lys-66 reveals more detectable changes than were previously suggested by NMR spectroscopy at ambient pressure.


Asunto(s)
Nucleasa Microcócica/química , Sustitución de Aminoácidos , Medición de Intercambio de Deuterio , Concentración de Iones de Hidrógeno , Lisina/química , Lisina/metabolismo , Nucleasa Microcócica/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Presión , Conformación Proteica , Desplegamiento Proteico , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
11.
Biology (Basel) ; 10(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34356511

RESUMEN

Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.

12.
Structure ; 28(2): 244-251.e3, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31753618

RESUMEN

LicT belongs to an essential family of bacterial transcriptional antitermination proteins controlling the expression of sugar-metabolizing operons. When activated, they bind to nascent mRNAs, preventing premature arrest of transcription. The RNA binding capacity of the N-terminal domain CAT is controlled by phosphorylations of two homologous regulation modules by the phosphotransferase system (PTS). Previous studies on truncated and mutant proteins provided partial insight into the mechanism of signal transduction between the effector and regulatory modules. We report here the conformational and functional investigation on the allosteric activation of full-length LicT. Combining fluorescence anisotropy and NMR, we find a tight correlation between LicT RNA binding capacity and CAT closure upon PTS-mediated phosphorylation and phosphomimetic mutations. Our study highlights fine structural differences between activation processes. Furthermore, the NMR study of full-length proteins points to the back and forth propagation of structural restraints from the RNA binding to the distal regulatory module.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fosfotransferasas/metabolismo , ARN Bacteriano/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Regulación Alostérica , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Conformación Proteica , Factores de Transcripción/genética
13.
Sci Rep ; 9(1): 18084, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792250

RESUMEN

Rust fungi are plant pathogens that secrete an arsenal of effector proteins interfering with plant functions and promoting parasitic infection. Effectors are often species-specific, evolve rapidly, and display low sequence similarities with known proteins. How rust fungal effectors function in host cells remains elusive, and biochemical and structural approaches have been scarcely used to tackle this question. In this study, we produced recombinant proteins of eleven candidate effectors of the leaf rust fungus Melampsora larici-populina in Escherichia coli. We successfully purified and solved the three-dimensional structure of two proteins, MLP124266 and MLP124017, using NMR spectroscopy. Although both MLP124266 and MLP124017 show no sequence similarity with known proteins, they exhibit structural similarities to knottins, which are disulfide-rich small proteins characterized by intricate disulfide bridges, and to nuclear transport factor 2-like proteins, which are molecular containers involved in a wide range of functions, respectively. Interestingly, such structural folds have not been reported so far in pathogen effectors, indicating that MLP124266 and MLP124017 may bear novel functions related to pathogenicity. Our findings show that sequence-unrelated effectors can adopt folds similar to known proteins, and encourage the use of biochemical and structural approaches to functionally characterize effector candidates.


Asunto(s)
Basidiomycota/química , Cistina/química , Proteínas Fúngicas/química , Proteínas de Transporte Nucleocitoplasmático/química , Basidiomycota/genética , Cistina/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas de Transporte Nucleocitoplasmático/genética , Enfermedades de las Plantas/microbiología , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
J Biol Chem ; 283(45): 30838-49, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18682383

RESUMEN

LicT belongs to a family of bacterial transcriptional antiterminators, which control the expression of sugar-metabolizing operons in response to phosphorylations by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Previous studies of LicT have revealed the structural basis of RNA recognition by the dimeric N-terminal co-antiterminator (CAT) domain on the one hand and the conformational changes undergone by the duplicated regulation domain (PRD1 and PRD2) upon activation on the other hand. To investigate the mechanism of signal transduction between the effector and regulation modules, we have undertaken the characterization of a fragment, including the CAT and PRD1 domains and the linker in-between. Comparative experiments, including RNA binding assays, NMR spectroscopy, limited proteolysis, analytical ultracentrifugation, and circular dichroism, were conducted on native CAT-PRD1 and on a constitutively active CAT-PRD1 mutant carrying a D99N substitution in PRD1. We show that in the native state, CAT-PRD1 behaves as a rather unstable RNA-binding deficient dimer, in which the CAT dimer interface is significantly altered and the linker region is folded as a trypsin-resistant helix. In the activated mutant form, the CAT-PRD1 linker becomes protease-sensitive, and the helix content decreases, and the CAT module adopts the same dimeric conformation as in isolated CAT, thereby restoring the affinity for RNA. From these results, we propose that a helix-to-coil transition in the linker acts as the structural relay triggered by the regulatory domain for remodeling the effector dimer interface. In essence, the structural mechanism modulating the LicT RNA antitermination activity is thus similar to that controlling the DNA binding activity of dimeric transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/química , Modelos Moleculares , Proteínas de Unión al ARN/química , Transducción de Señal/fisiología , Factores de Transcripción/química , Proteínas Bacterianas/metabolismo , Dicroismo Circular/métodos , Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Ultracentrifugación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA