Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 40(6): 1750-1759, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30511786

RESUMEN

Shorter telomere length (TL) has been associated with the development of mood disorders as well as abnormalities in brain morphology. However, so far, no studies have considered the role TL may have on brain function during tasks relevant to mood disorders. In this study, we examine the relationship between TL and functional brain activation and connectivity, while participants (n = 112) perform a functional magnetic resonance imaging (fMRI) facial affect recognition task. Additionally, because variation in TL has a substantial genetic component we calculated polygenic risk scores for TL to test if they predict face-related functional brain activation. First, our results showed that TL was positively associated with increased activation in the amygdala and cuneus, as well as increased connectivity from posterior regions of the face network to the ventral prefrontal cortex. Second, polygenic risk scores for TL show a positive association with medial prefrontal cortex activation. The data support the view that TL and genetic loading for shorter telomeres, influence the function of brain regions known to be involved in emotional processing.


Asunto(s)
Trastorno Bipolar/fisiopatología , Encéfalo/fisiopatología , Emociones/fisiología , Reconocimiento en Psicología/fisiología , Telómero , Adulto , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Expresión Facial , Femenino , Predisposición Genética a la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tiempo de Reacción/fisiología
2.
Am J Hum Genet ; 96(6): 857-68, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26027500

RESUMEN

In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset.


Asunto(s)
Interpretación Estadística de Datos , Regulación de la Expresión Génica/genética , Genes/genética , Variación Genética , Sitios de Carácter Cuantitativo/genética , Humanos , Análisis Multivariante , Distribución Normal , Polimorfismo de Nucleótido Simple/genética , Probabilidad , Tamaño de la Muestra , Estadísticas no Paramétricas
3.
PLoS Genet ; 11(2): e1004996, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25692570

RESUMEN

Recent studies have demonstrated that the DNA methylome changes with age. This epigenetic drift may have deep implications for cellular differentiation and disease development. However, it remains unclear how much of this drift is functional or caused by underlying changes in cell subtype composition. Moreover, no study has yet comprehensively explored epigenetic drift at different genomic length scales and in relation to regulatory elements. Here we conduct an in-depth analysis of epigenetic drift in blood tissue. We demonstrate that most of the age-associated drift is independent of the increase in the granulocyte to lymphocyte ratio that accompanies aging and that enrichment of age-hypermethylated CpG islands increases upon adjustment for cellular composition. We further find that drift has only a minimal impact on in-cis gene expression, acting primarily to stabilize pre-existing baseline expression levels. By studying epigenetic drift at different genomic length scales, we demonstrate the existence of mega-base scale age-associated hypomethylated blocks, covering approximately 14% of the human genome, and which exhibit preferential hypomethylation in age-matched cancer tissue. Importantly, we demonstrate the feasibility of integrating Illumina 450k DNA methylation with ENCODE data to identify transcription factors with key roles in cellular development and aging. Specifically, we identify REST and regulatory factors of the histone methyltransferase MLL complex, whose function may be disrupted in aging. In summary, most of the epigenetic drift seen in blood is independent of changes in blood cell type composition, and exhibits patterns at different genomic length scales reminiscent of those seen in cancer. Integration of Illumina 450k with appropriate ENCODE data may represent a fruitful approach to identify transcription factors with key roles in aging and disease.


Asunto(s)
Envejecimiento/genética , Proteínas Sanguíneas/biosíntesis , Metilación de ADN/genética , Proteínas de Unión al ADN/biosíntesis , Factores de Transcripción/genética , Envejecimiento/patología , Células Sanguíneas , Proteínas Sanguíneas/genética , Diferenciación Celular/genética , Islas de CpG/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica , Genoma Humano , Humanos , Neoplasias/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Factores de Transcripción/biosíntesis
4.
Am J Med Genet B Neuropsychiatr Genet ; 174(4): 427-434, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28394502

RESUMEN

Antidepressant-induced hippocampal neurogenesis (AHN) is hypothesized to contribute to increases in hippocampal volume among major depressive disorder patients after long-term treatment. Furthermore, rodent studies suggest AHN may be the cellular mechanism mediating the therapeutic benefits of antidepressants. Here, we perform the first investigation of genome-wide expression changes associated with AHN in human cells. We identify gene expression networks significantly activated during AHN, and we perform gene set analyses to probe the molecular relationship between AHN, hippocampal volume, and antidepressant response. The latter were achieved using genome-wide association summary data collected from 30,717 individuals as part of the ENIGMA Consortium (genetic predictors of hippocampal volume dataset), and data collected from 1,222 major depressed patients as part of the NEWMEDS Project (genetic predictors of response to antidepressants dataset). Our results showed that the selective serotonin reuptake inhibitor, escitalopram evoked AHN in human cells; dose-dependently increasing the differentiation of cells into neuroblasts, as well as increasing gliogenesis. Activated genome-wide expression networks relate to axon and microtubule formation, and ribosomal biogenesis. Gene set analysis revealed that gene expression changes associated with AHN were nominally enriched for genes predictive of hippocampal volume, but not for genes predictive of therapeutic response.


Asunto(s)
Citalopram/farmacología , Trastorno Depresivo Mayor/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genoma Humano , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Neurogénesis/genética , Antidepresivos de Segunda Generación/farmacología , Células Cultivadas , Trastorno Depresivo Mayor/tratamiento farmacológico , Redes Reguladoras de Genes/efectos de los fármacos , Hipocampo/efectos de los fármacos , Humanos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
5.
Hum Mol Genet ; 23(10): 2721-8, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24399446

RESUMEN

Seasonal patterns in behavior and biological parameters are widespread. Here, we examined seasonal changes in whole blood gene expression profiles of 233 healthy subjects. Using weighted gene co-expression network analysis, we identified three co-expression modules showing circannual patterns. Enrichment analysis suggested that this signal stems primarily from red blood cells and blood platelets. Indeed, a large clinical database with 51 142 observations of blood cell counts over 3 years confirmed a corresponding seasonal pattern of counts of red blood cells, reticulocytes and platelets. We found no direct evidence that these changes are linked to genes known to be key players in regulating immune function or circadian rhythm. It is likely, however, that these seasonal changes in cell counts and gene expression profiles in whole blood represent biological and clinical relevant phenomena. Moreover, our findings highlight possible confounding factors relevant to the study of gene expression profiles in subjects collected at geographical locations with disparaging seasonality patterns.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Transcriptoma/fisiología , Adulto , Proteínas Sanguíneas/genética , Femenino , Humanos , Estudios Longitudinales , Masculino , Periodicidad , Recuento de Reticulocitos , Estaciones del Año
6.
Br J Psychiatry ; 209(3): 202-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27151072

RESUMEN

BACKGROUND: Recent studies point to overlap between neuropsychiatric disorders in symptomatology and genetic aetiology. AIMS: To systematically investigate genomics overlap between childhood and adult attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). METHOD: Analysis of whole-genome blood gene expression and genetic risk scores of 318 individuals. Participants included individuals affected with adult ADHD (n = 93), childhood ADHD (n = 17), MDD (n = 63), ASD (n = 51), childhood dual diagnosis of ADHD-ASD (n = 16) and healthy controls (n = 78). RESULTS: Weighted gene co-expression analysis results reveal disorder-specific signatures for childhood ADHD and MDD, and also highlight two immune-related gene co-expression modules correlating inversely with MDD and adult ADHD disease status. We find no significant relationship between polygenic risk scores and gene expression signatures. CONCLUSIONS: Our results reveal disorder overlap and specificity at the genetic and gene expression level. They suggest new pathways contributing to distinct pathophysiology in psychiatric disorders and shed light on potential shared genomic risk factors.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Trastorno Depresivo Mayor/genética , Perfilación de la Expresión Génica , Adulto , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno del Espectro Autista/complicaciones , Estudios de Casos y Controles , Niño , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
Hum Mol Genet ; 20(20): 4076-81, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21791550

RESUMEN

Common sequence variants have recently joined rare structural polymorphisms as genetic factors with strong evidence for association with schizophrenia. Here we extend our previous genome-wide association study and meta-analysis (totalling 7 946 cases and 19 036 controls) by examining an expanded set of variants using an enlarged follow-up sample (up to 10 260 cases and 23 500 controls). In addition to previously reported alleles in the major histocompatibility complex region, near neurogranin (NRGN) and in an intron of transcription factor 4 (TCF4), we find two novel variants showing genome-wide significant association: rs2312147[C], upstream of vaccinia-related kinase 2 (VRK2) [odds ratio (OR) = 1.09, P = 1.9 × 10(-9)] and rs4309482[A], between coiled-coiled domain containing 68 (CCDC68) and TCF4, about 400 kb from the previously described risk allele, but not accounted for by its association (OR = 1.09, P = 7.8 × 10(-9)).


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/genética , Esquizofrenia/genética , Factores de Transcripción/genética , Alelos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Riesgo , Factor de Transcripción 4
8.
Am J Med Genet B Neuropsychiatr Genet ; 162B(1): 1-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23129290

RESUMEN

Common SNPs in the transcription factor 4 (TCF4; ITF2, E2-2, SEF-2) gene, which encodes a basic Helix-Loop-Helix (bHLH) transcription factor, are associated with schizophrenia, conferring a small increase in risk. Other common SNPs in the gene are associated with the common eye disorder Fuch's corneal dystrophy, while rare, mostly de novo inactivating mutations cause Pitt-Hopkins syndrome. In this review, we present a systematic bioinformatics and literature review of the genomics, biological function and interactome of TCF4 in the context of schizophrenia. The TCF4 gene is present in all vertebrates, and although protein length varies, there is high conservation of primary sequence, including the DNA binding domain. Humans have a unique leucine-rich nuclear export signal. There are two main isoforms (A and B), as well as complex splicing generating many possible N-terminal amino acid sequences. TCF4 is highly expressed in the brain, where plays a role in neurodevelopment, interacting with class II bHLH transcription factors Math1, HASH1, and neuroD2. The Ca(2+) sensor protein calmodulin interacts with the DNA binding domain of TCF4, inhibiting transcriptional activation. It is also the target of microRNAs, including mir137, which is implicated in schizophrenia. The schizophrenia-associated SNPs are in linkage disequilibrium with common variants within putative DNA regulatory elements, suggesting that regulation of expression may underlie association with schizophrenia. Combined gene co-expression analyses and curated protein-protein interaction data provide a network involving TCF4 and other putative schizophrenia susceptibility genes. These findings suggest new opportunities for understanding the molecular basis of schizophrenia and other mental disorders.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Estudios de Asociación Genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Esquizofrenia/genética , Factores de Transcripción/genética , Humanos , Mapas de Interacción de Proteínas/genética , Factor de Transcripción 4
9.
BMC Genomics ; 13: 458, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22950410

RESUMEN

BACKGROUND: Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson's disease and Alzheimer's disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. RESULTS: In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. CONCLUSIONS: Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.


Asunto(s)
Inversión Cromosómica , Cromosomas Humanos Par 17/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas tau/genética , Enfermedad de Alzheimer/genética , Secuencia de Bases , Sangre/metabolismo , Encéfalo/patología , Europa (Continente) , Femenino , Expresión Génica , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Polimorfismo Genético , Análisis de Componente Principal , Análisis de Secuencia de ADN , Parálisis Supranuclear Progresiva/genética
10.
BMC Genomics ; 13: 636, 2012 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-23157493

RESUMEN

BACKGROUND: The predominant model for regulation of gene expression through DNA methylation is an inverse association in which increased methylation results in decreased gene expression levels. However, recent studies suggest that the relationship between genetic variation, DNA methylation and expression is more complex. RESULTS: Systems genetic approaches for examining relationships between gene expression and methylation array data were used to find both negative and positive associations between these levels. A weighted correlation network analysis revealed that i) both transcriptome and methylome are organized in modules, ii) co-expression modules are generally not preserved in the methylation data and vice-versa, and iii) highly significant correlations exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression and methylation of different modules (i.e., trans effects at the level of modules). We observed that methylation probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for CpG island shores was present when methylation, associated with expression, was under local genetic control. A structural equation model based analysis found strong support in particular for a traditional causal model in which gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA methylation levels. CONCLUSIONS: Our results provide new insights into the complex mechanisms between genetic markers, epigenetic mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and expression modules differ, they are highly correlated.


Asunto(s)
Células Sanguíneas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , Variación Genética , Transcriptoma/genética , Células Sanguíneas/química , Islas de CpG/genética , Genotipo , Humanos , Modelos Lineales , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética
11.
Aging Dis ; 12(8): 2151-2172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34881092

RESUMEN

Age-related alteration in neural stem cell function is linked to neurodegenerative conditions and cognitive decline. In rodents, this can be reversed by exposure to a young systemic milieu and conversely, the old milieu can inhibit stem cell function in young rodents. In this study, we investigated the in vitro effect of the human systemic milieu on human hippocampal progenitor cells (HPCs) using human serum from early adulthood, mid-life and older age. We showed that neuroblast number following serum treatment is predictive of larger dentate gyrus, CA3, CA4 and whole hippocampus volumes and that allogeneic human serum from asymptomatic older individuals induced a two-fold increase in apoptotic cell death of HPCs compared with serum from young adults. General linear models revealed that variability in markers of proliferation and differentiation was partly attributable to use of antihypertensive medication and very mild cognitive decline among older subjects. Finally, using an endophenotype approach and whole-genome expression arrays, we showed upregulation of established and novel ageing molecular hallmarks in response to old serum. Serum from older subjects induced a wide range of cellular and molecular phenotypes, likely reflecting a lifetime of environmental exposures. Our findings support a role for the systemic enviroment in neural stem cell maintenance and are in line with others highlighting a distinction between neurobiological and chronological ageing. Finally, the herein described serum assay can be used by future studies to further analyse the effect of environmental exposures as well as to determine the role of the systemic environment in health and disease.

12.
Psychoneuroendocrinology ; 132: 105350, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271521

RESUMEN

Schizophrenia is a severe and multifactorial disorder with an unknown causative pathophysiology. Abnormalities in neurodevelopmental and aging processes have been reported. Relative telomere length (RTL) and DNA methylation age (DMA), well-known biomarkers for estimating biological age, are both commonly altered in patients with schizophrenia compared to healthy controls. However, few studies investigated these aging biomarkers in first-episode psychosis (FEP) and in antipsychotic-naïve patients. To cover the existing gap regarding DMA and RTL in FEP and antipsychotic treatment, we aimed to verify whether those aging markers could be associated with psychosis and treatment response. Thus, we evaluated these measures in the blood of FEP antipsychotic-naïve patients and healthy controls (HC), as well as the response to antipsychotics after 10 weeks of treatment with risperidone. RTL was measured in 392 subjects, being 80 FEP and 312 HC using qPCR, while DMA was analyzed in a subset of 60 HC, 60 FEP patients (antipsychotic-naïve) and 59 FEP-10W (after treatment) using the "Multi-tissue Predictor"and the Infinium HumanMethylation450 BeadChip Kit. We observed diminished DMA and longer RTL in FEP patients before treatment compared to healthy controls, indicating a decelerated aging process in those patients. We found no statistical difference between responder and non-responder patients at baseline for both markers. An increased DMA was observed in patients after 10 weeks of treatment, however, after adjusting for blood cell composition, no significant association remained. Our findings indicate a decelerated aging process in the early phases of the disease.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Envejecimiento , Antipsicóticos/uso terapéutico , Biomarcadores , Humanos , Politetrafluoroetileno/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico
13.
Adv Healthc Mater ; 10(21): e2101103, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34523263

RESUMEN

Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation.


Asunto(s)
Prótesis Vascular , Interleucina-4 , Animales , Heparina , Macrófagos , Ratas , Ingeniería de Tejidos , Andamios del Tejido
14.
BMC Genomics ; 11: 20, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-20064228

RESUMEN

BACKGROUND: We performed gene expression profiling of the amygdala and hippocampus taken from inbred mouse strains C57BL/6J and A/J. The selected brain areas are implicated in neurobehavioral traits while these mouse strains are known to differ widely in behavior. Consequently, we hypothesized that comparing gene expression profiles for specific brain regions in these strains might provide insight into the molecular mechanisms of human neuropsychiatric traits. We performed a whole-genome gene expression experiment and applied a systems biology approach using weighted gene co-expression network analysis. RESULTS: We were able to identify modules of co-expressed genes that distinguish a strain or brain region. Analysis of the networks that are most informative for hippocampus and amygdala revealed enrichment in neurologically, genetically and psychologically related pathways. Close examination of the strain-specific gene expression profiles, however, revealed no functional relevance but a significant enrichment of single nucleotide polymorphisms in the probe sequences used for array hybridization. This artifact was not observed for the modules of co-expressed genes that distinguish amygdala and hippocampus. CONCLUSIONS: The brain-region specific modules were found to be independent of genetic background and are therefore likely to represent biologically relevant molecular networks that can be studied to complement our knowledge about pathways in neuropsychiatric disease.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Ratones Endogámicos A/genética , Ratones Endogámicos C57BL/genética , Animales , Análisis por Conglomerados , Expresión Génica , Redes Reguladoras de Genes , Masculino , Ratones , Modelos Genéticos , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
15.
Schizophr Res ; 217: 124-135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31391148

RESUMEN

We performed a transcriptome-wide meta-analysis and gene co-expression network analysis to identify genes and gene networks dysregulated in the peripheral blood of bipolar disorder (BD) cases relative to unaffected comparison subjects, and determined the specificity of the transcriptomic signatures of BD and schizophrenia (SZ). Nineteen genes and 4 gene modules were significantly differentially expressed in BD cases. Thirteen gene modules were shown to be differentially expressed in a combined case-group of BD and SZ subjects called "major psychosis", including genes biologically linked to apoptosis, reactive oxygen, chromatin remodeling, and immune signaling. No modules were differentially expressed between BD and SZ cases. Machine-learning classifiers trained to separate diagnostic classes based solely on gene expression profiles could distinguish BD cases from unaffected comparison subjects with an area under the curve (AUC) of 0.724, as well as BD cases from SZ cases with AUC = 0.677 in withheld test samples. We introduced a novel and straightforward method called "polytranscript risk scoring" that could distinguish BD cases from unaffected subjects (AUC = 0.672) and SZ cases (AUC = 0.607) significantly better than expected by chance. Taken together, our results highlighted gene expression alterations common to BD and SZ that involve biological processes of inflammation, oxidative stress, apoptosis, and chromatin regulation, and highlight disorder-specific changes in gene expression that discriminate the major psychoses.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Trastorno Bipolar/genética , Perfilación de la Expresión Génica , Humanos , Trastornos Psicóticos/genética , Esquizofrenia/genética , Transcriptoma
16.
ACS Appl Polym Mater ; 1(8): 2044-2054, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31423488

RESUMEN

Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.

17.
Neuropsychopharmacology ; 44(4): 757-765, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559463

RESUMEN

Telomere length is a promising biomarker for age-related disease and a potential anti-ageing drug target. Here, we study the genetic architecture of telomere length and the repositioning potential of lithium as an anti-ageing medication. LD score regression applied to the largest telomere length genome-wide association study to-date, revealed SNP-chip heritability estimates of 7.29%, with polygenic risk scoring capturing 4.4% of the variance in telomere length in an independent cohort (p = 6.17 × 10-5). Gene-enrichment analysis identified 13 genes associated with telomere length, with the most significant being the leucine rich repeat gene, LRRC34 (p = 3.69 × 10-18). In the context of lithium, we confirm that chronic use in a sample of 384 bipolar disorder patients is associated with longer telomeres (p = 0.03). As complementary evidence, we studied three orthologs of telomere length regulators in a Caenorhabditis elegans model of lithium-induced extended longevity and found all transcripts to be affected post-treatment (p < 0.05). Lithium may therefore confer its anti-ageing effects by moderating the expression of genes responsible for normal telomere length regulation. This is supported by our bipolar disorder sample, which shows that polygenic risk scores explain a higher proportion of the variance in telomere length amongst chronic lifetime lithium users (variance explained = 8.9%, p = 0.01), compared to non-users (p > 0.05). Consequently, this suggests that lithium may be catalysing the activity of endogenous mechanisms that promote telomere lengthening, whereby its efficacy eventually becomes limited by each individual's inherent telomere maintenance capabilities. Our work indicates a potential use of polygenic risk scoring for the prediction of adult telomere length and consequently lithium's anti-ageing efficacy.


Asunto(s)
Trastorno Bipolar/genética , Litio/farmacología , Longevidad/efectos de los fármacos , Telómero/efectos de los fármacos , Adulto , Animales , Trastorno Bipolar/tratamiento farmacológico , Caenorhabditis elegans , Estudios de Casos y Controles , Femenino , Expresión Génica/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Telómero/genética
18.
Eur Neuropsychopharmacol ; 29(5): 643-652, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30879928

RESUMEN

The relation of heavy cannabis use with decreased neuropsychological function has frequently been described but the underlying biological mechanisms are still largely unknown. This study investigates the relation of cannabis use with genome wide gene expression and subsequently examines the relations with neuropsychological function. Genome-wide gene expression in whole blood was compared between heavy cannabis users (N = 90) and cannabis naïve participants (N = 100) that were matched for psychotic like experiences. The results were validated using quantitative real-time PCR. Psychotic like experiences were assessed using the Comprehensive Assessment of Psychotic Experiences (CAPE). Neuropsychological function was estimated using four subtasks of the Wechsler Adult Intelligence Scale (WAIS). Subsequent in vitro studies in monocytes and a neuroblastoma cell line investigated expression changes in response to two major psychotropic components of cannabis; tetrahydrocannabinol (THC) and cannabidiol (CBD). mRNA expression of Protein Tyrosine Phosphatase Receptor Type F Polypeptide-Interacting-Protein Alpha-2 (PPFIA2) was significantly higher in cannabis users (LogFold Change 0.17) and confirmed by qPCR analysis. PPFIA2 expression level was negatively correlated with estimated intelligence (B=-22.9, p = 0.002) also in the 100 non-users (B=-28.5, p = 0.037). In vitro exposure of monocytes to CBD led to significant increase in PPFIA2 expression. However, exposure of monocytes to THC and neuroblastoma cells to THC or CBD did not change PPFIA2 expression. Change in PPFIA2 gene expression in response to cannabinoids is a putative mechanism by which cannabis could influence neuropsychological functions. The findings warrant further exploration of the role of PPFIA2 in cannabis induced changes of neuropsychological function, particularly in relation to CBD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Fumar Marihuana/metabolismo , Fumar Marihuana/psicología , Proteínas de la Membrana/biosíntesis , Pruebas Neuropsicológicas , Proteínas Adaptadoras Transductoras de Señales/agonistas , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Cannabinoides/farmacología , Línea Celular Tumoral , Dronabinol/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Humanos , Masculino , Fumar Marihuana/genética , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/genética , Adulto Joven
19.
NPJ Schizophr ; 5(1): 5, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923314

RESUMEN

The study of patients with schizophrenia (SZ) at different clinical stages may help clarify what effects could be due to the disease itself, to the pharmacological treatment, or to the disease progression. We compared expression levels of targeted genes in blood from individuals in different stages of SZ: clinical high risk for psychosis (CHR), first episode of psychosis (FEP), and chronic SZ (CSZ). Then, we further verified whether single-nucleotide polymorphisms (SNPs) could be related to gene expression differences. We investigated 12 genes in 394 individuals (27 individuals with CHR, 70 antipsychotic-naive individuals with FEP, 157 CSZ patients, and 140 healthy controls (HCs)). For a subsample, genotype data were also available, and we extracted SNPs that were previously associated with the expression of selected genes in whole blood or brain tissue. We generated a mediation model in which a putative cause (SNP) is related to a presumed effect (disorder) via an intermediate variable (gene expression). MBP and NDEL1 were upregulated in FEP compared to all other groups; DGCR8 was downregulated in FEP compared to HC and CHR; DGCR2 was downregulated in CSZ compared to FEP and HCs; DISC1 was upregulated in schizophrenia compared to controls or FEP, possibly induced by the rs3738398 and rs10864693 genotypes, which were associated with DISC1 expression; and UFD1 was upregulated in CSZ and CHR compared to FEP and HC. Our results indicated changes in gene expression profiles throughout the different clinical stages of SZ, reinforcing the need for staging approaches to better capture SZ heterogeneity.

20.
Biol Psychiatry ; 85(12): 1065-1073, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31003785

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is moderately heritable, with a high prevalence and a presumed high heterogeneity. Copy number variants (CNVs) could contribute to the heritable component of risk, but the two previous genome-wide association studies of rare CNVs did not report significant findings. METHODS: In this meta-analysis of four cohorts (5780 patients and 6626 control subjects), we analyzed the association of MDD to 1) genome-wide burden of rare deletions and duplications, partitioned by length (<100 kb or >100 kb) and other characteristics, and 2) individual rare exonic CNVs and CNV regions. RESULTS: Patients with MDD carried significantly more short deletions than control subjects (p = .0059) but not long deletions or short or long duplications. The confidence interval for long deletions overlapped with that for short deletions, but long deletions were 70% less frequent genome-wide, reducing the power to detect increased burden. The increased burden of short deletions was primarily in intergenic regions. Short deletions in cases were also modestly enriched for high-confidence enhancer regions. No individual CNV achieved thresholds for suggestive or significant association after genome-wide correction. p values < .01 were observed for 15q11.2 duplications (TUBGCP5, CYFIP1, NIPA1, and NIPA2), deletions in or near PRKN or MSR1, and exonic duplications of ATG5. CONCLUSIONS: The increased burden of short deletions in patients with MDD suggests that rare CNVs increase the risk of MDD by disrupting regulatory regions. Results for longer deletions were less clear, but no large effects were observed for long multigenic CNVs (as seen in schizophrenia and autism). Further studies with larger sample sizes are warranted.


Asunto(s)
Trastorno Depresivo Mayor/genética , Eliminación de Secuencia , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA