Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838667

RESUMEN

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Humanos , Proteínas de Unión a Telómeros/metabolismo , Complejo Shelterina/metabolismo , Telómero/metabolismo , Fosforilación , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , Microscopía por Crioelectrón , Telomerasa/metabolismo , Modelos Moleculares
2.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007263

RESUMEN

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Asunto(s)
Variación Estructural del Genoma/genética , Genómica/métodos , Neoplasias/genética , Inversión Cromosómica/genética , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
3.
Nat Rev Mol Cell Biol ; 20(4): 259, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30816301

RESUMEN

In the original Fig. 2a, telomeres are erroneously depicted having blunt ends following resection and CST-mediated fill-in. Instead, telomeres retain 3' overhangs, as depicted below.

4.
Genes Dev ; 37(13-14): 555-569, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495394

RESUMEN

It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.


Asunto(s)
Telomerasa , Animales , Humanos , Telomerasa/metabolismo , ADN Primasa/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , Replicación del ADN , Mamíferos/genética
5.
Cell ; 163(4): 880-93, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544937

RESUMEN

Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Microtúbulos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Reparación del ADN por Unión de Extremidades , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Telómero , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
6.
Cell ; 163(7): 1641-54, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687355

RESUMEN

Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here, we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 µm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 hr after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis.


Asunto(s)
Inestabilidad Cromosómica , Cromosomas Humanos , Inestabilidad Genómica , Neoplasias/genética , Telómero , Aberraciones Cromosómicas , Citocinesis , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Mitosis , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo
7.
Nature ; 627(8004): 664-670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418884

RESUMEN

Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Replicación del ADN , Proteínas de Unión a Telómeros , Telómero , Humanos , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
8.
Genes Dev ; 36(17-18): 956-969, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229075

RESUMEN

Telomeric DNA challenges the replisome and requires TRF1 for efficient duplication. TRF1 recruits the BLM helicase, but BLM loss does not explain the extensive telomere fragility, ATR signaling, and sister telomere associations (STAs) induced by TRF1 deletion. Here, we document that Helix2 of the TRFH domain and Helix1 of the Myb domain of TRF1 are required for efficient telomere replication. Mutation of both helices generated a TRF1 separation-of-function mutant (TRF1-E83K/LW-TI) that induced severe telomere replication defects but no ATR signaling or STAs. We identified the transcription and nucleotide excision repair (NER) factor TFIIH as a critical effector of TRF1. Loss of TFIIH subunits, but no other NER factors, caused the same telomere replication phenotypes as the TRF1-E83K/LW-TI mutant independent of the effects on TRF1 expression. TFIIH subunits coimmunoprecipitated with wild-type TRF1 but not with TRF1-E83K/LW-TI. These results establish that the major mechanism by which TRF1 ensures telomere replication involves a noncanonical function of TFIIH.


Asunto(s)
Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Telómero/genética , Telómero/metabolismo , Replicación del ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN/metabolismo
9.
Nat Rev Mol Cell Biol ; 18(3): 175-186, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28096526

RESUMEN

The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.


Asunto(s)
Inestabilidad Genómica , Neoplasias/genética , Telómero/fisiología , Cromotripsis , Humanos , Neoplasias/prevención & control , Telomerasa/genética , Telomerasa/metabolismo , Acortamiento del Telómero
10.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764137

RESUMEN

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Asunto(s)
Proteína 2 de Unión a Repeticiones Teloméricas , Tripeptidil Peptidasa 1 , Animales , Mamíferos/genética , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
11.
Cell ; 155(2): 345-356, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120135

RESUMEN

We have applied a super-resolution fluorescence imaging method, stochastic optical reconstruction microscopy (STORM), to visualize the structure of functional telomeres and telomeres rendered dysfunctional through removal of shelterin proteins. The STORM images showed that functional telomeres frequently exhibit a t-loop configuration. Conditional deletion of individual components of shelterin showed that TRF2 was required for the formation and/or maintenance of t-loops, whereas deletion of TRF1, Rap1, or the POT1 proteins (POT1a and POT1b) had no effect on the frequency of t-loop occurrence. Within the shelterin complex, TRF2 uniquely serves to protect telomeres from two pathways that are initiated on free DNA ends: classical nonhomologous end-joining (NHEJ) and ATM-dependent DNA damage signaling. The TRF2-dependent remodeling of telomeres into t-loop structures, which sequester the ends of chromosomes, can explain why NHEJ and the ATM signaling pathway are repressed when TRF2 is present.


Asunto(s)
Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Ratones , Microscopía Fluorescente , Complejo Shelterina , Proteínas de Unión a Telómeros
12.
Genes Dev ; 34(1-2): 7-23, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896689

RESUMEN

53BP1 is an enigmatic DNA damage response factor that gained prominence because it determines the efficacy of PARP1 inhibitory drugs (PARPi) in BRCA1-deficient cancers. Recent studies have elevated 53BP1 from its modest status of (yet another) DNA damage factor to master regulator of double-strand break (DSB) repair pathway choice. Our review of the literature suggests an alternative view. We propose that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of DSBs. The consequences of 53BP1 deficiency, such as diminished PARPi efficacy in BRCA1-deficient cells and altered repair of damaged telomeres, can be explained from this viewpoint. We further propose that some of the fidelity functions of 53BP1 coevolved with class switch recombination (CSR) in the immune system. We speculate that, rather than being deterministic in DSB repair pathway choice, 53BP1 functions as a DSB escort that guards against illegitimate and potentially tumorigenic recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Evolución Molecular , Humanos , Cambio de Clase de Inmunoglobulina/genética , Telómero/genética , Proteína 1 de Unión al Supresor Tumoral P53/deficiencia , Proteína 1 de Unión al Supresor Tumoral P53/genética
13.
Genes Dev ; 34(19-20): 1392-1405, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883681

RESUMEN

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Roturas del ADN de Doble Cadena , Replicación del ADN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Telómero/patología , Animales , Línea Celular , Células Cultivadas , Reparación del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Fibroblastos , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo
14.
Cell ; 150(1): 39-52, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22748632

RESUMEN

A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Animales , Replicación del ADN , Ratones , Datos de Secuencia Molecular , Alineación de Secuencia , Acortamiento del Telómero
15.
Annu Rev Genet ; 52: 223-247, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30208292

RESUMEN

For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3' overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN por Recombinación/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Cromosomas , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/genética
16.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407308

RESUMEN

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Asunto(s)
Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN , Endonucleasas , Telómero , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Telómero/metabolismo , Telómero/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Reparación del ADN por Unión de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Unión Proteica , Roturas del ADN de Doble Cadena , Fosforilación , ADN/metabolismo , ADN/química , ADN/genética
17.
Genes Dev ; 37(1-2): 14-15, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061981
18.
Cell ; 141(1): 81-93, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20371347

RESUMEN

Tetraploidization has been proposed as an intermediate step toward aneuploidy in human cancer but a general mechanism for the induction of tetraploidy during tumorigenesis is lacking. We report that tetraploidization occurs in p53-deficient cells experiencing a prolonged DNA damage signal due to persistent telomere dysfunction. Live-cell imaging revealed that these cells have an extended G2 due to ATM/ATR- and Chk1/Chk2-mediated inhibition of Cdk1/CyclinB and eventually bypass mitosis. Despite their lack of mitosis, the cells showed APC/Cdh1-dependent degradation of the replication inhibitor geminin, followed by accumulation of Cdt1, which is required for origin licensing. Cells then entered a second S phase resulting in whole-genome reduplication and tetraploidy. Upon restoration of telomere protection, these tetraploid cells resumed cell division cycles and proliferated. These observations suggest a general mechanism for the induction of tetraploidization in the early stages of tumorigenesis when telomere dysfunction can result from excessive telomere shortening.


Asunto(s)
Mitosis , Neoplasias/genética , Ploidias , Telómero/genética , Ciclosoma-Complejo Promotor de la Anafase , Aneuploidia , Animales , Cadherinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN , Embrión de Mamíferos/citología , Humanos , Ratones , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
19.
Annu Rev Cell Dev Biol ; 27: 585-610, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21801013

RESUMEN

Although nearly all mammalian species are diploid, whole-genome duplications occur in select mammalian tissues as part of normal development. Such programmed polyploidization involves changes in the regulatory pathways that normally maintain the diploid state of the mammalian genome. Unscheduled whole-genome duplications, which lead primarily to tetraploid cells, also take place in a substantial fraction of human tumors and have been proposed to constitute an important step in the development of cancer aneuploidy. The origins of these polyploidization events and their consequences for tumor progression are explored in this review.


Asunto(s)
Morfogénesis/genética , Neoplasias/genética , Poliploidía , Envejecimiento/genética , Aneuploidia , Animales , Ciclo Celular/fisiología , Transformación Celular Neoplásica/genética , Daño del ADN , Diploidia , Genoma , Humanos , Cariotipificación , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(31): e2201662119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881804

RESUMEN

Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.


Asunto(s)
Complejo Shelterina , Humanos , Espectrometría de Masas , Microscopía Electrónica , Dominios Proteicos , Complejo Shelterina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA