Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192618

RESUMEN

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Asunto(s)
Arabidopsis , Inmunidad de la Planta , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Reconocimiento de Patrones , Transducción de Señal
2.
PLoS Pathog ; 20(7): e1012336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018347

RESUMEN

Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.


Asunto(s)
Proteínas Cullin , Leishmania infantum , Leishmania infantum/metabolismo , Leishmania infantum/enzimología , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Ubiquitinación , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
3.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955484

RESUMEN

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Asunto(s)
Plantones/metabolismo , Triptófano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Ciclohexenos/metabolismo , Fenilalanina/metabolismo , Ácido Shikímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
J Integr Neurosci ; 23(3): 53, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38538219

RESUMEN

Carnosic acid (CA), a diterpene obtained mainly from Rosmarinus officinalis and Salvia officinalis, exerts antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. At least in part, those benefits are associated with the ability that CA modulates mitochondrial physiology. CA attenuated bioenergetics collapse and redox impairments in the mitochondria obtained from brain cells exposed to several toxicants in both in vitro and in vivo experimental models. CA is a potent inducer of the major modulator of the redox biology in animal cells, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of a myriad of genes whose products are involved with cytoprotection in different contexts. Moreover, CA upregulates signaling pathways related to the degradation of damaged mitochondria (mitophagy) and with the synthesis of these organelles (mitochondrial biogenesis). Thus, CA may be considered an agent that induces mitochondrial renewal, depending on the circumstances. In this review, we discuss about the mechanisms of action by which CA promotes mitochondrial protection in brain cells.


Asunto(s)
Abietanos , Antioxidantes , Mitocondrias , Animales , Antioxidantes/farmacología , Oxidación-Reducción , Mitocondrias/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
5.
Chem Res Toxicol ; 36(4): 570-582, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537067

RESUMEN

The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.


Asunto(s)
Diterpenos de Tipo Kaurano , Peroxirredoxinas , Antibacterianos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Kanamicina , Bacterias
6.
BMC Neurol ; 23(1): 150, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046209

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health, sleep and quality of life, especially in individuals with chronic disease. Therefore, the purpose of this systematic review and meta-analysis was to investigate the impact of the COVID-19 pandemic on neuropsychiatric disorders (depression, anxiety, stress), sleep disorders (sleep quality, insomnia) and quality of life in individuals with Parkinson's disease (PD), Multiple Sclerosis (MS) and Alzheimer's disease (AD) compared to healthy controls. METHODS: Seven databases (Medline, Embase, ScienceDirect, Web of Science, The Cochrane Library, Scielo and Lilacs) were searched between March 2020 and December 2022. Observational studies (i.e., cross-sectional, case-control, cohort) were included. GRADE approach was used to assess the quality of evidence and strength of the recommendation. Effect size was calculated using standardized mean differences (SMD; random effects model). A customized Downs and Black checklist was used to assess the risk of bias. RESULTS: Eighteen studies (PD = 7, MS = 11) were included. A total of 627 individuals with PD (healthy controls = 857) and 3923 individuals with MS (healthy controls = 2432) were analyzed. Twelve studies (PD = 4, MS = 8) were included in the meta-analysis. Individuals with PD had significantly elevated levels of depression (very low evidence, SMD = 0.40, p = 0.04) and stress (very low evidence, SMD = 0.60, p < 0.0001). There was no difference in anxiety (p = 0.08). Individuals with MS had significantly higher levels of depression (very low evidence, SMD = 0.73, p = 0.007) and stress (low evidence, SMD = 0.69, p = 0.03) and low quality of life (very low evidence, SMD = 0.77, p = 0.006). There was no difference in anxiety (p = 0.05) and sleep quality (p = 0.13). It was not possible to synthesize evidence in individuals with AD and sleep disorder (insomnia). CONCLUSION: In general, the COVID-19 pandemic negatively impacted individuals with PD and MS. Individuals with PD showed significantly higher levels of depression and stress; and individuals with MS presented significantly higher depression and stress levels, as well as significantly lower quality of life when compared to healthy controls. Further studies are needed to investigate the impact of the COVID-19 pandemic in individuals with AD.


Asunto(s)
COVID-19 , Enfermedades Desmielinizantes , Enfermedad de Parkinson , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Humanos , Pandemias , COVID-19/epidemiología , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Calidad de Vida , Estudios Transversales , Trastornos del Sueño-Vigilia/epidemiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/epidemiología , Depresión/epidemiología
7.
Metab Brain Dis ; 38(2): 437-452, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35316449

RESUMEN

The reactive dicarbonyl methylglyoxal (MG) behaves as a pro-oxidant agent, causing redox dysfunction and cell death by different mechanisms in mammalian cells. MG is also a mitochondrial toxicant, impairing the oxidative phosphorylation (OXPHOS) system and leading to bioenergetics and redox collapses. MG induces glycation and exerts an important role in neurodegenerative and cardiovascular diseases. Isoorientin (ISO), a C-glucosyl flavone found in Aspalathus linearis, Fagopyrum esculentum, and Passiflora edulis, among others, is an antioxidant and anti-inflammatory molecule. ISO is a potent inducer of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master modulator of the redox environment in mammals. We investigated here whether ISO would prevent the mitochondria-related redox and bioenergetics impairments induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were administrated with ISO at 20 µM for 18 h prior to the exposure to MG at 500 µM for further 24 h. It was observed that ISO efficiently prevented the mitochondrial impairments caused by MG. ISO upregulated the activity of the enzyme γ-glutamate-cysteine ligase (γ-GCL), consequently stimulating the synthesis of glutathione (GSH). The inhibition of γ-GCL, adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt) suppressed the beneficial effects induced by ISO on the MG-challenged cells. Moreover, silencing of Nrf2 blocked the ISO-dependent γ-GCL and GSH upregulation and the effects on the mitochondria of the MG-challenged cells. Then, ISO caused mitochondrial protection by an AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH-dependent manner in MG-administrated SH-SY5Y cells.


Asunto(s)
Neuroblastoma , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/farmacología , Piruvaldehído/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Neuroblastoma/metabolismo , Glutatión/metabolismo , Luteolina/farmacología , Luteolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Mamíferos/metabolismo
8.
Metab Brain Dis ; 38(2): 419-435, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35469083

RESUMEN

Sulforaphane (SFN) promotes protective effects in different cell types. Nonetheless, it remains to be clarified by which mechanism SFN exerts benefits in mammalian cells. Mitochondria are a major source of adenosine triphosphate (ATP) and reactive species in nucleated cells. Mitochondrial impairment result in cellular redox biology disruption, bioenergetic status collapse, and inflammation. Evidence suggest that mitochondrial dysfunction plays a role in neurological disorders. Since a cure was not discovered yet to some of these diseases, investigating strategies to promote mitochondrial protection is pharmacologically relevant and may improve life quality of patients suffering from these maladies. Natural molecules, such as SFN, are potent inducers of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and, consequently, stimulate the expression of genes whose products, such as heme oxygenase-1 (HO-1), induce cytoprotective actions in mammalian tissues. In this work, we investigated whether SFN (5 µM) would be capable to prevent the dysfunctions caused by chlorpyrifos (CPF) on the human dopaminergic SH-SY5Y cells. Moreover, we examined the effects of a pretreatment with SFN at the same concentration on the mouse microglial BV2 cells stimulated by lipopolysaccharide (LPS) in an experimental model of neuroinflammation. SFN prevented the mitochondrial impairment and the neuroinflammation caused by the chemical stressors in both cell types. Inhibition of heme oxygenase-1 (HO-1) suppressed the mitochondrial protection and anti-inflammatory action afforded by SFN in this experimental model. Overall, SFN promoted cytoprotection by a mechanism dependent on the HO-1 enzyme in the SH-SY5Y and BV2 cells.


Asunto(s)
Neuroblastoma , Enfermedades Neuroinflamatorias , Humanos , Animales , Ratones , Hemo-Oxigenasa 1/metabolismo , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma/metabolismo , Mitocondrias/metabolismo , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Mamíferos/metabolismo
9.
Pestic Biochem Physiol ; 193: 105420, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248027

RESUMEN

Tuta absoluta can cause 100% loss in tomato yield in Brazil and chemical control, which uses cartap hydrochloride (nereistoxin derivative), is still the most used tactic against T. absoluta populations. Despite the long use of cartap hydrochloride, the genetic and physiological bases underlying the resistance are not known. Resistance to cartap hydrochloride among field populations varied from very low (RR = 2.3 fold) to very high (RR = 537 fold). The Gameleira 2 (GML 2-Res) population was exposed to cartap hydrochloride (up to 500 mg L-1) for few rounds of selection to clean extrinsic factors before used in downstream experiments after 2.5 years without selection in laboratory. Resistance to cartap hydrochloride was autosomal, incompletely recessive, and polyfactorial. The effective dominance (dominance level of survival at a given insecticide dose) at 60 mg of cartap hydrochloride L-1 (which killed 100% of heterozygous individuals) discriminated resistant from susceptible phenotypes. Hydrolases and glutathione S-transferase appear to detoxify cartap hydrochloride as TPP and DEM synergized its toxicity, but CYP450-dependent monooxygenases are as well implicated. Cross-resistance was significant between cartap hydrochloride and methoxyfenozide (RR = 6.99 fold), deltamethrin (RR = 3.57 fold), chlorfenapyr (RR = 3.21 fold), or chlorantraniliprole (RR = 2.83 fold). The characterization of T. absoluta resistance to cartap hydrochloride provides valuable information to refine the management of resistance to insecticides (MRI) program in Brazil with cross resistance pattern very favorable to the rotation of active ingredients that will impair survival of this pest to that insecticide in the field.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética
10.
Biotechnol Appl Biochem ; 69(2): 503-513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33624365

RESUMEN

Asparaginases (ASNases) are a large and structurally diverse group of enzymes ubiquitous amongst archaea, bacteria and eukaryotes, that catalyze hydrolysis of asparagine to aspartate and ammonia. Bacterial ASNases are important biopharmaceuticals for the treatment of acute lymphoblastic leukemia, although some patients experience adverse allergic side effects during treatment with these protein therapeutics. ASNases are currently divided into three families: plant-type ASNases, Rhizobium etli-type ASNases and bacterial-type ASNases. This system is outdated as both bacterial-type and plant-type families also include archaeal, bacterial and eukaryotic enzymes, each with their own distinct characteristics. Herein, phylogenetic studies allied to tertiary structural analyses are described with the aim of proposing a revised and more robust classification system that considers the biochemical diversity of ASNases. Accordingly, based on distinct peptide domains, phylogenetic data, structural analysis and functional characteristics, we recommend that ASNases now be divided into three new distinct classes containing subgroups according to structural and functional aspects. Using this new classification scheme, 25 ASNases were identified as candidates for future new lead discovery.


Asunto(s)
Asparaginasa , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginasa/química , Bacterias/metabolismo , Humanos , Hidrólisis , Filogenia
11.
J Chem Phys ; 157(21): 214503, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511554

RESUMEN

Neutron diffraction with magnesium isotope substitution, high energy x-ray diffraction, and 29Si, 27Al, and 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy were used to measure the structure of glassy diopside (CaMgSi2O6), enstatite (MgSiO3), and four (MgO)x(Al2O3)y(SiO2)1-x-y glasses, with x = 0.375 or 0.25 along the 50 mol. % silica tie-line (1 - x - y = 0.5) or with x = 0.3 or 0.2 along the 60 mol. % silica tie-line (1 - x - y = 0.6). The bound coherent neutron scattering length of the isotope 25Mg was remeasured, and the value of 3.720(12) fm was obtained from a Rietveld refinement of the powder diffraction patterns measured for crystalline 25MgO. The diffraction results for the glasses show a broad asymmetric distribution of Mg-O nearest-neighbors with a coordination number of 4.40(4) and 4.46(4) for the diopside and enstatite glasses, respectively. As magnesia is replaced by alumina along a tie-line with 50 or 60 mol. % silica, the Mg-O coordination number increases with the weighted bond distance as less Mg2+ ions adopt a network-modifying role and more of these ions adopt a predominantly charge-compensating role. 25Mg magic angle spinning (MAS) NMR results could not resolve the different coordination environments of Mg2+ under the employed field strength (14.1 T) and spinning rate (20 kHz). The results emphasize the power of neutron diffraction with isotope substitution to provide unambiguous site-specific information on the coordination environment of magnesium in disordered materials.

12.
BMC Geriatr ; 22(1): 940, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476582

RESUMEN

BACKGROUND: To interpret changes of muscle strength in older adults with Alzheimer's disease (AD), determining the reliability of outcome measures is necessary. Therefore, the purpose of the present study was to investigate the relative and absolute intra-rater reliability of concentric isokinetic measures of the knee and ankle muscle strength in community-dwelling older adults without and with AD in the mild and moderate stages. METHODS: A methodological study was conducted. The participants were submitted to two isokinetic evaluations with an interval of three to seven days. The evaluations consisted of knee extension and flexion at 60°/s (five repetitions) and 180°/s (15 repetitions) and plantar flexion and dorsiflexion of the ankle at 30°/s (five repetitions). The measures of interest were peak torque, average peak torque and total work. The intraclass correlation coefficient two-way mixed model of a single-measure (ICC3,1), standard error of measurement (SEM) and minimal detectable change at the 95% confidence interval (MDC95) were calculated. The ICC3,1 was interpreted based on Munro's classification. Standard error of measurement and MDC95 were analyzed in absolute and relative values (percentage of error [SEM%] and change [MDC95%]). RESULTS: A total of 62 older adults were included and allocated to the three groups: mild-AD (n = 22, 79.9 years, 15 female and seven male), moderate-AD (n = 20, 81.6 years, 15 female and five male) and without-AD (n = 20, 74.3 years, 10 female and seven male). The ICCs3,1 of the measures of knee were high/very high in the three groups (0.71-0.98). The ICCs3,1 of the measures of ankle were high/very high in the mild-AD group (0.78-0.92), moderate/high/very high in the moderate-AD group (0.63-0.93) and high/very high in the group without-AD (0.84-0.97). The measurements of knee extensors at 60°/s, knee extensors (peak torque and total work), with the exception of peak torque in the mild-AD group, and flexors (average peak torque) at 180°/s, and ankle dorsiflexors at 30°/s had the lowest of SEM% and MDC95% in the three groups. CONCLUSION: Concentric isokinetic measures are reliable for the assessment of knee and ankle muscle strength in community-dwelling older adults without and with AD in the mild and moderate stages.


Asunto(s)
Enfermedad de Alzheimer , Vida Independiente , Femenino , Masculino , Humanos , Anciano , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/diagnóstico , Fuerza Muscular
13.
Metab Brain Dis ; 37(3): 607-617, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35000053

RESUMEN

Mitochondria are a primary source and a target of reactive oxygen species (ROS). Increased mitochondrial production of ROS is associated with bioenergetics decline, cell death, and inflammation. Here we investigated whether a pretreatment (for 24 h) with sesamol (SES; at 12.5-50 µM) would be efficient in preventing the mitochondrial collapse induced by hydrogen peroxide (H2O2, at 300 µM) in the human neuroblastoma SH-SY5Y cell line. We have found that a pretreatment with SES at 25 µM decreased the effects of H2O2 on lipid peroxidation, protein carbonylation, and protein nitration in membranes obtained from the mitochondria isolated from the SH-SY5Y cells. In this regard, SES pretreatment decreased the production of superoxide anion radical (O2-•) by the mitochondria of H2O2-treated cells. SES also prevented the mitochondrial dysfunction induced by H2O2, as assessed by analyzing the activity of the complexes I and V. The H2O2-induced reduction in the production of adenosine triphosphate (ATP) was also prevented by SES. The levels of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), as well as the activity of the transcription factor nuclear factor-κB (NF-κB) were downregulated by the SES pretreatment in the H2O2-challenged cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor abolished the protection induced by SES regarding mitochondrial function and inflammation. Thus, SES depends on Nrf2 to promote mitochondrial protection in cells facing redox impairment.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neuroblastoma , Benzodioxoles , Línea Celular Tumoral , Supervivencia Celular , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma/metabolismo , Fenoles , Especies Reactivas de Oxígeno/metabolismo
14.
Trop Anim Health Prod ; 54(5): 276, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070151

RESUMEN

The study aimed to verify the influence of the FecGE mutation in superovulated ewes and to evaluate the probability of logistic models to determine the response capacity of these ewes to superovulatory treatment. Santa Inês ewes (n = 29) were genotyped for the FecGE mutation and separated for their genotype group in carriers of the mutant E allele (FecGE/E, FecG+/E) and non-carrier (FecG+/+) alleles. The ewes underwent hormonal treatment for superovulation. Aside from the genotypes, variables included in the statistical model were reproductive status (empty, early lactation, or late lactation), age (> or < 6 years), and number of births (nulliparous, primiparous, multiparous). The carriers of the mutation could be discriminated from the non-carriers based on the number of corpora lutea, rate of frozen embryos, and fecundity. Recovery rate was significantly higher (P < 0.05) in FecGE/E (94.31%) compared to FecG+/E (63.15%) and FecG+/+ (61.90%) (P < 0.05), whereas fecundity rate of FecG+/+ ewes (50.76%) was significantly higher than FecG+/E (18.96%) and FecGE/E (32.53%) (P < 0.05). We determined in this study that the response to superovulation and embryo production can be discriminated between FecGE/E and FecG+/E ewes in relation to the FecG+/+ genotype. Logistic models that included reproductive status and mutation, or reproductive status and age, or reproductive status and number of births were effective in predicting the response to superovulatory treatment.


Asunto(s)
Embrión de Mamíferos , Superovulación , Animales , Cuerpo Lúteo , Femenino , Lactancia , Modelos Logísticos , Ovinos
15.
Neurochem Res ; 46(3): 482-493, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33219897

RESUMEN

Emodin (EM; 1,3,8-trihydroxy-6-methylanthracene-9,10-dione; C15H10O5) is an anthraquinone and exerts cytoprotective effects, as observed in both in vitro and in vivo experimental models. Mitochondrial dysfunction induced by reactive species plays a central role in the onset and progression of different human diseases. Thus, we have tested here whether a pretreatment (for 4 h) with EM (at 40 µM) would be able to promote mitochondrial protection in the human neuroblastoma SH-SY5Y cells exposed to the pro-oxidant agent hydrogen peroxide (H2O2). We found that the pretreatment with EM suppressed the effects of H2O2 on the activity of the mitochondrial complexes I and V, as well as on the production of adenosine triphosphate (ATP) and on the mitochondrial membrane potential (MMP). EM also prevented the H2O2-induced collapse in the tricarboxylic acid cycle (TCA) function. An anti-inflammatory role for EM was also observed in this experimental model, since this anthraquinone decreased the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) by the H2O2-challenged cells. Inhibition of the adenosine monophosphate-activated protein kinase (AMPK) or silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) abolished the protection induced by EM in the H2O2-treated cells. Therefore, EM prevented the H2O2-induced mitochondrial dysfunction and pro-inflammatory state in the SH-SY5Y cells by an AMPK/Nrf2-dependent manner.


Asunto(s)
Antiinflamatorios/farmacología , Emodina/farmacología , Peróxido de Hidrógeno/toxicidad , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos
16.
Neurochem Res ; 46(4): 740-754, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33392911

RESUMEN

Methylglyoxal (MG) is a reactive dicarbonyl presenting both endogenous (e.g. glycolysis) and exogenous (e.g. food cooking) sources. MG induces neurotoxicity, at least in part, by affecting mitochondrial function, including a decline in the oxidative phosphorylation (OXPHOS) system activity, bioenergetics failure, and redox disturbances. Sulforaphane (SFN) is an isothiocyanate found mainly in cruciferous vegetables and exerts antioxidant and anti-inflammatory effects in mammalian cells. SFN also decreases mitochondrial vulnerability to several chemical stressors. SFN is a potent activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master regulator of the mammalian redox biology. Here, we have investigated whether and how SFN would be able to prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. The cells were exposed to SFN at 5 µM for 24 h prior to the administration of MG at 500 µM for additional 24 h. We found that SFN prevented the MG-induced OXPHOS dysfunction and mitochondrial redox impairment. SFN stimulated the activity of the enzyme γ-glutamylcysteine ligase (γ-GCL), leading to increased synthesis of glutathione (GSH). Inhibition of γ-GCL with buthionine sulfoximine (BSO) or silencing of Nrf2 using small interfering RNA (siRNA) against this transcription factor reduced the levels of GSH and abolished the mitochondrial protection promoted by SFN in the MG-treated cells. Thus, SFN protected mitochondria of the MG-challenged cells by a mechanism involving the Nrf2/γ-GCL/GSH axis.


Asunto(s)
Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Isotiocianatos/farmacología , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Piruvaldehído/toxicidad , Sulfóxidos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Activadores de Enzimas/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos
17.
Phys Chem Chem Phys ; 23(22): 12559-12568, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34027938

RESUMEN

High-field dynamic nuclear polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization are radical-containing solutions which are added by post-synthesis impregnation of the sample. Although this strategy is very efficient for a wide variety of materials, the presence of the solvent may influence the chemistry of functional species of interest. Here we address the development of a comprehensive strategy for solvent-free DNP enhanced NMR characterization of functional (target) species on the surface of mesoporous silica (SBA-15). The strategy includes the partial functionalization of the silica surface with Carboxy-Proxyl nitroxide radicals and target Fmoc-Glycine functional groups. As a proof of principle, we have observed for the first time DNP signal enhancements, using the solvent-free approach, for 13C{1H} CPMAS signals corresponding to organic functionalities on the silica surface. DNP enhancements of up to 3.4 were observed for 13C{1H} CPMAS, corresponding to an experimental time save of about 12 times. This observation opens the possibility for the DNP-NMR study of surface functional groups without the need of a solvent, allowing, for example, the characterization of catalytic reactions occurring on the surface of mesoporous systems of interest. For 29Si with direct polarization NMR, up to 8-fold DNP enhancements were obtained. This 29Si signal enhancement is considerably higher than the obtained with similar approaches reported in literature. Finally, from DNP enhancement profiles we conclude that cross-effect is probably the dominant polarization transfer mechanism.

18.
Appl Microbiol Biotechnol ; 105(14-15): 5701-5717, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34258640

RESUMEN

The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.


Asunto(s)
Peróxido de Hidrógeno , Peroxirredoxinas , Animales , Oxidación-Reducción , Estrés Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Plantas/metabolismo
19.
Appl Microbiol Biotechnol ; 105(19): 7463-7473, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34542687

RESUMEN

Sugar-rich environments represent an important challenge for microorganisms. The osmotic and molecular imbalances resulting from this condition severely limit microbial metabolism and growth. Gluconacetobacter diazotrophicus is one of the most sugar-tolerant prokaryotes, able to grow in the presence of sucrose concentrations up to 30%. However, the mechanisms that control its tolerance to such conditions remain poorly exploited. The present work investigated the key mechanisms of tolerance to high sugar in G. diazotrophicus. Comparative proteomics was applied to investigate the main functional pathways regulated in G. diazotrophicus when cultivated in the presence of high sucrose. Among 191 proteins regulated by high sucrose, regulatory pathways related to sugar metabolism, nutrient uptake, compatible solute synthesis, amino acid metabolism, and proteolytic system were highlighted. The role of these pathways on high-sucrose tolerance was investigated by mutagenesis analysis, which revealed that the knockout mutants zwf::Tn5 (sugar metabolism), tbdr::Tn5 (nutrient uptake), mtlK::Tn5 (compatible solute synthesis), pepN::Tn5 (proteolytic system), metH::Tn5 (amino acid metabolism), and ilvD::Tn5 (amino acid metabolism) became more sensitive to high sucrose. Together, our results identified mechanisms involved in response to high sugar in G. diazotrophicus, shedding light on the combination of osmotolerance and sugar-tolerance mechanisms. KEY POINTS: • G. diazotrophicus intensifies glycolysis to metabolize the excess of sugar. • G. diazotrophicus turns down the uptake of nutrients in response to high sugar. • G. diazotrophicus requires amino acid availability to resist high sugar.


Asunto(s)
Sacarosa , Azúcares , Gluconacetobacter , Presión Osmótica
20.
Arch Phys Med Rehabil ; 102(10): 1998-2011, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33587899

RESUMEN

OBJECTIVE: To investigate the effects of resistance exercise (RE) on body structure and function, activity, and participation in individuals with Parkinson Disease (PD) in the mild to moderate stages. DATA SOURCES: Medline, Embase, Web of Science, The Cochrane Library, Lilacs, and PEDro were searched from inception until June 2020 using the terms "Parkinson Disease," "Exercise," "Resistance Training," "Muscle Strength," "Cardiorespiratory Fitness," "Postural Balance," "Gait," and "Quality of Life." STUDY SELECTION: We included studies conducted in individuals with PD involving RE compared with a control group. Two independent reviewers performed the selection process based on titles, abstracts, and full-text reading. In total, 270 individuals with PD were included from 10 selected studies. DATA EXTRACTION: Two reviewers independently extracted characteristics related to participants, intervention and control types, and results. The PEDro scale was used to assess the methodological quality, and the level of evidence was analyzed and synthesized using the Grading of Recommendation, Assessment, Development, and Evaluations approach. DATA SYNTHESIS: The level of evidence for body structure and function was low and without effect for lower limb muscle strength; very low and with effect for upper limb muscle strength, cardiorespiratory fitness, and postural balance; and very low and without effect for flexibility after RE training. For activity, the evidence was very low and with effect for gait and very low and without effect for mobility. For participation (ie, quality of life) the evidence was very low and without effect. CONCLUSIONS: Although the level of evidence was low to very low, RE was shown to promote improvements in body structure and function (upper limb muscle strength, cardiovascular function, postural balance) and activity (gait). In contrast, RE did not significantly improve participation (quality of life). However, based on the present findings, the practice of RE can be recommended for individuals with PD in the mild to moderate stages.


Asunto(s)
Capacidad Cardiovascular/fisiología , Trastornos Neurológicos de la Marcha/rehabilitación , Fuerza Muscular/fisiología , Enfermedad de Parkinson/rehabilitación , Equilibrio Postural/fisiología , Calidad de Vida , Entrenamiento de Fuerza/métodos , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA