Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Infect Dis ; 78(Supplement_2): S131-S137, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662696

RESUMEN

Mass drug administration (MDA) of antifilarial drugs is the main strategy for the elimination of lymphatic filariasis (LF). Recent clinical trials indicated that the triple-drug therapy with ivermectin, diethylcarbamazine, and albendazole (IDA) is much more effective against LF than the widely used two-drug combinations (albendazole plus either ivermectin or diethylcarbamazine). For IDA-based MDA, the stop-MDA decision is made based on microfilariae (mf) prevalence in adults. In this study, we assess how the probability of eventually reaching elimination of transmission depends on the critical threshold used in transmission assessment surveys (TAS-es) to define whether transmission was successfully suppressed and triple-drug MDA can be stopped. This analysis focuses on treatment-naive Indian settings. We do this for a range of epidemiological and programmatic contexts, using the established LYMFASIM model for transmission and control of LF. Based on our simulations, a single TAS, one year after the last MDA round, provides limited predictive value of having achieved suppressed transmission, while a higher MDA coverage increases elimination probability, thus leading to a higher predictive value. Every additional TAS, conditional on previous TAS-es being passed with the same threshold, further improves the predictive value for low values of stop-MDA thresholds. An mf prevalence threshold of 0.5% corresponding to TAS-3 results in ≥95% predictive value even when the MDA coverage is relatively low.


Asunto(s)
Albendazol , Dietilcarbamazina , Quimioterapia Combinada , Filariasis Linfática , Filaricidas , Ivermectina , Administración Masiva de Medicamentos , Microfilarias , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Humanos , Albendazol/uso terapéutico , Albendazol/administración & dosificación , Filaricidas/uso terapéutico , Dietilcarbamazina/uso terapéutico , Dietilcarbamazina/administración & dosificación , Ivermectina/uso terapéutico , Ivermectina/administración & dosificación , Animales , India/epidemiología , Microfilarias/efectos de los fármacos , Adulto , Prevalencia
2.
Clin Infect Dis ; 78(Supplement_2): S153-S159, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662699

RESUMEN

BACKGROUND: Control of schistosomiasis (SCH) relies on the regular distribution of preventive chemotherapy (PC) over many years. For the sake of sustainable SCH control, a decision must be made at some stage to scale down or stop PC. These "stopping decisions" are based on population surveys that assess whether infection levels are sufficiently low. However, the limited sensitivity of the currently used diagnostic (Kato-Katz [KK]) to detect low-intensity infections is a concern. Therefore, the use of new, more sensitive, molecular diagnostics has been proposed. METHODS: Through statistical analysis of Schistosoma mansoni egg counts collected from Burundi and a simulation study using an established transmission model for schistosomiasis, we investigated the extent to which more sensitive diagnostics can improve decision making regarding stopping or continuing PC for the control of S. mansoni. RESULTS: We found that KK-based strategies perform reasonably well for determining when to stop PC at a local scale. Use of more sensitive diagnostics leads to a marginally improved health impact (person-years lived with heavy infection) and comes at a cost of continuing PC for longer (up to around 3 years), unless the decision threshold for stopping PC is adapted upward. However, if this threshold is set too high, PC may be stopped prematurely, resulting in a rebound of infection levels and disease burden (+45% person-years of heavy infection). CONCLUSIONS: We conclude that the potential value of more sensitive diagnostics lies more in the reduction of survey-related costs than in the direct health impact of improved parasite control.


Asunto(s)
Análisis Costo-Beneficio , Recuento de Huevos de Parásitos , Schistosoma mansoni , Esquistosomiasis mansoni , Humanos , Animales , Schistosoma mansoni/aislamiento & purificación , Esquistosomiasis mansoni/diagnóstico , Esquistosomiasis mansoni/prevención & control , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Antihelmínticos/uso terapéutico , Antihelmínticos/economía , Femenino , Masculino , Esquistosomiasis/diagnóstico , Esquistosomiasis/prevención & control , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/epidemiología , Adulto , Adolescente , Niño , Quimioprevención/economía , Quimioprevención/métodos , Adulto Joven , Sensibilidad y Especificidad
3.
Clin Infect Dis ; 78(Supplement_2): S146-S152, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662703

RESUMEN

Globally, there are over 1 billion people infected with soil-transmitted helminths (STHs), mostly living in marginalized settings with inadequate sanitation in sub-Saharan Africa and Southeast Asia. The World Health Organization recommends an integrated approach to STH morbidity control through improved access to sanitation and hygiene education and the delivery of preventive chemotherapy (PC) to school-age children delivered through schools. Progress of STH control programs is currently estimated using a baseline (pre-PC) school-based prevalence survey and then monitored using periodical school-based prevalence surveys, known as Impact Assessment Surveys (IAS). We investigated whether integrating geostatistical methods with a Markov model or a mechanistic transmission model for projecting prevalence forward in time from baseline can improve IAS design strategies. To do this, we applied these 2 methods to prevalence data collected in Kenya, before evaluating and comparing their performance in accurately informing optimal survey design for a range of IAS sampling designs. We found that, although both approaches performed well, the mechanistic method more accurately projected prevalence over time and provided more accurate information for guiding survey design. Both methods performed less well in areas with persistent STH hotspots where prevalence did not decrease despite multiple rounds of PC. Our findings show that these methods can be useful tools for more efficient and accurate targeting of PC. The general framework built in this paper can also be used for projecting prevalence and informing survey design for other neglected tropical diseases.


Asunto(s)
Helmintiasis , Cadenas de Markov , Suelo , Humanos , Helmintiasis/epidemiología , Helmintiasis/transmisión , Prevalencia , Kenia/epidemiología , Suelo/parasitología , Niño , Helmintos/aislamiento & purificación , Animales , Modelos Estadísticos , Adolescente , Instituciones Académicas
4.
Clin Infect Dis ; 78(Supplement_2): S93-S100, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662701

RESUMEN

BACKGROUND: Mass drug administration (MDA) is the cornerstone for the elimination of lymphatic filariasis (LF). The proportion of the population that is never treated (NT) is a crucial determinant of whether this goal is achieved within reasonable time frames. METHODS: Using 2 individual-based stochastic LF transmission models, we assess the maximum permissible level of NT for which the 1% microfilaremia (mf) prevalence threshold can be achieved (with 90% probability) within 10 years under different scenarios of annual MDA coverage, drug combination and transmission setting. RESULTS: For Anopheles-transmission settings, we find that treating 80% of the eligible population annually with ivermectin + albendazole (IA) can achieve the 1% mf prevalence threshold within 10 years of annual treatment when baseline mf prevalence is 10%, as long as NT <10%. Higher proportions of NT are acceptable when more efficacious treatment regimens are used. For Culex-transmission settings with a low (5%) baseline mf prevalence and diethylcarbamazine + albendazole (DA) or ivermectin + diethylcarbamazine + albendazole (IDA) treatment, elimination can be reached if treatment coverage among eligibles is 80% or higher. For 10% baseline mf prevalence, the target can be achieved when the annual coverage is 80% and NT ≤15%. Higher infection prevalence or levels of NT would make achieving the target more difficult. CONCLUSIONS: The proportion of people never treated in MDA programmes for LF can strongly influence the achievement of elimination and the impact of NT is greater in high transmission areas. This study provides a starting point for further development of criteria for the evaluation of NT.


Asunto(s)
Albendazol , Filariasis Linfática , Filaricidas , Ivermectina , Administración Masiva de Medicamentos , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/prevención & control , Filariasis Linfática/epidemiología , Filariasis Linfática/transmisión , Humanos , Animales , Filaricidas/uso terapéutico , Filaricidas/administración & dosificación , Albendazol/administración & dosificación , Albendazol/uso terapéutico , Ivermectina/administración & dosificación , Ivermectina/uso terapéutico , Prevalencia , Anopheles/parasitología , Erradicación de la Enfermedad/métodos , Wuchereria bancrofti/efectos de los fármacos , Dietilcarbamazina/administración & dosificación , Dietilcarbamazina/uso terapéutico , Quimioterapia Combinada
5.
Clin Infect Dis ; 78(Supplement_2): S117-S125, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662702

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a debilitating, poverty-promoting, neglected tropical disease (NTD) targeted for worldwide elimination as a public health problem (EPHP) by 2030. Evaluating progress towards this target for national programmes is challenging, due to differences in disease transmission and interventions at the subnational level. Mathematical models can help address these challenges by capturing spatial heterogeneities and evaluating progress towards LF elimination and how different interventions could be leveraged to achieve elimination by 2030. METHODS: Here we used a novel approach to combine historical geo-spatial disease prevalence maps of LF in Ethiopia with 3 contemporary disease transmission models to project trends in infection under different intervention scenarios at subnational level. RESULTS: Our findings show that local context, particularly the coverage of interventions, is an important determinant for the success of control and elimination programmes. Furthermore, although current strategies seem sufficient to achieve LF elimination by 2030, some areas may benefit from the implementation of alternative strategies, such as using enhanced coverage or increased frequency, to accelerate progress towards the 2030 targets. CONCLUSIONS: The combination of geospatial disease prevalence maps of LF with transmission models and intervention histories enables the projection of trends in infection at the subnational level under different control scenarios in Ethiopia. This approach, which adapts transmission models to local settings, may be useful to inform the design of optimal interventions at the subnational level in other LF endemic regions.


Asunto(s)
Erradicación de la Enfermedad , Filariasis Linfática , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Filariasis Linfática/transmisión , Etiopía/epidemiología , Humanos , Prevalencia , Modelos Teóricos , Política de Salud
6.
Clin Infect Dis ; 78(Supplement_2): S108-S116, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662704

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging. METHODS: We developed a computationally feasible framework for providing subnational projections for LF across 44 sub-Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 2030, enhanced coverage, and biannual treatment. RESULTS: Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, respectively. CONCLUSIONS: While projections based on baseline data have limitations, our methodological advancements provide assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas with high baseline prevalence may face challenges in achieving the 2030 goals, extending the "tail" of interventions. Enhancing intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the impact of local interventions and is applicable to other regions and neglected tropical diseases.


Asunto(s)
Filariasis Linfática , Filariasis Linfática/epidemiología , Filariasis Linfática/prevención & control , Humanos , África del Sur del Sahara/epidemiología , Prevalencia , Erradicación de la Enfermedad/métodos , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/prevención & control , Filaricidas/uso terapéutico
7.
Clin Infect Dis ; 78(Supplement_2): S83-S92, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662692

RESUMEN

Over the past decade, considerable progress has been made in the control, elimination, and eradication of neglected tropical diseases (NTDs). Despite these advances, most NTD programs have recently experienced important setbacks; for example, NTD interventions were some of the most frequently and severely impacted by service disruptions due to the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modeling can help inform selection of interventions to meet the targets set out in the NTD road map 2021-2030, and such studies should prioritize questions that are relevant for decision-makers, especially those designing, implementing, and evaluating national and subnational programs. In September 2022, the World Health Organization hosted a stakeholder meeting to identify such priority modeling questions across a range of NTDs and to consider how modeling could inform local decision making. Here, we summarize the outputs of the meeting, highlight common themes in the questions being asked, and discuss how quantitative modeling can support programmatic decisions that may accelerate progress towards the 2030 targets.


Asunto(s)
COVID-19 , Enfermedades Desatendidas , Medicina Tropical , Enfermedades Desatendidas/prevención & control , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Modelos Teóricos , Organización Mundial de la Salud , SARS-CoV-2 , Toma de Decisiones , Salud Global
8.
Trop Med Int Health ; 27(8): 696-704, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687493

RESUMEN

OBJECTIVES: Sex work sites have been hypothesised to be at the root of the observed heterogeneity in HIV prevalence in sub-Saharan Africa. We determined if proximity to sex work sites is associated with HIV prevalence among the general population in Zimbabwe, a country with one of the highest HIV prevalence in the world. METHODS: In this cross-sectional study we use a unique combination of nationally representative geolocated individual-level data from 16,121 adults (age 15-49 years) from 400 sample locations and the locations of 55 sex work sites throughout Zimbabwe; covering an estimated 95% of all female sex workers (FSWs). We calculated the shortest distance by road from each survey sample location to the nearest sex work site, for all sites and by type of sex work site, and conducted univariate and multivariate multilevel logistic regressions to determine the association between distance to sex work sites and HIV seropositivity, controlling for age, sex, male circumcision status, number of lifetime sex partners, being a FSW client or being a stable partner of an FSW client. RESULTS: We found no significant association between HIV seroprevalence and proximity to the nearest sex work site among the general population in Zimbabwe, regardless of which type of site is closest (city site adjusted odds ratio [aOR] 1.010 [95% confidence interval {CI} 0.992-1.028]; economic growth point site aOR 0.982 [95% CI 0.962-1.002]; international site aOR 0.995 [95% CI 0.979-1.012]; seasonal site aOR 0.987 [95% CI 0.968-1.006] and transport site aOR 1.007 [95% CI 0.987-1.028]). Individual-level indicators of sex work were significantly associated with HIV seropositivity: being an FSW client (aOR 1.445 [95% CI 1.188-1.745]); nine or more partners versus having one to three lifetime partners (aOR 2.072 [95% CI 1.654-2.596]). CONCLUSIONS: Sex work sites do not seem to directly affect HIV prevalence among the general population in surrounding areas. Prevention and control interventions for HIV at these locations should primarily focus on sex workers and their clients, with special emphasis on including and retaining mobile sex workers and clients into services.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , Trabajadores Sexuales , Adolescente , Adulto , Estudios Transversales , Femenino , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Seroepidemiológicos , Trabajo Sexual , Lugar de Trabajo , Adulto Joven , Zimbabwe/epidemiología
9.
PLoS Comput Biol ; 17(9): e1009355, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34534205

RESUMEN

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties. These can stem from, e.g., limited knowledge about input parameters values or from the intrinsic stochastic nature of some computational models. They lead to uncertainties in the model predictions, raising the question what distribution of values the model produces for key indicators of the severity of the epidemic. Here we show how to tackle this question using techniques for uncertainty quantification and sensitivity analysis. We assess the uncertainties and sensitivities of four exit strategies implemented in an agent-based transmission model with geographical stratification. The exit strategies are termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased Opening. We consider two key indicators of the ability of exit strategies to avoid catastrophic health care overload: the maximum number of prevalent cases in intensive care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our results show that uncertainties not directly related to the exit strategies are secondary, although they should still be considered in comprehensive analysis intended to inform policy makers. The sensitivity analysis discloses the crucial role of the intervention uptake by the population and of the capability to trace infected individuals. Finally, we explore the existence of a safe operating space. For Intermittent Lockdown we find only a small region in the model parameter space where the key indicators of the model stay within safe bounds, whereas this region is larger for the other exit strategies.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles/métodos , Simulación por Computador , Incertidumbre , COVID-19/epidemiología , COVID-19/virología , Trazado de Contacto , Humanos , Probabilidad , SARS-CoV-2/aislamiento & purificación
10.
J Infect Dis ; 223(5): 905-913, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32645714

RESUMEN

BACKGROUND: Controlled human hookworm infections could significantly contribute to the development of a hookworm vaccine. However, current models are hampered by low and unstable egg output, reducing generalizability and increasing sample sizes. This study aims to investigate the safety, tolerability, and egg output of repeated exposure to hookworm larvae. METHODS: Twenty-four healthy volunteers were randomized, double-blindly, to 1, 2, or 3 doses of 50 Necator americanus L3 larvae at 2-week intervals. Volunteers were monitored weekly and were treated with albendazole at week 20. RESULTS: There was no association between larval dose and number or severity of adverse events. Geometric mean egg loads stabilized at 697, 1668, and 1914 eggs per gram feces for the 1 × 50L3, 2 × 50L3, and 3 × 50L3 group, respectively. Bayesian statistical modeling showed that egg count variability relative to the mean was reduced with a second infectious dose; however, the third dose did not increase egg load or decrease variability. We therefore suggest 2 × 50L3 as an improved challenge dose. Model-based simulations indicates increased frequency of stool sampling optimizes the power of hypothetical vaccine trials. CONCLUSIONS: Repeated infection with hookworm larvae increased egg counts to levels comparable to the field and reduced relative variability in egg output without aggravating adverse events. CLINICAL TRIALS REGISTRATION: NCT03257072.


Asunto(s)
Infecciones por Uncinaria , Recuento de Huevos de Parásitos , Albendazol/uso terapéutico , Animales , Teorema de Bayes , Heces/parasitología , Infecciones por Uncinaria/tratamiento farmacológico , Humanos , Larva , Necator americanus
11.
Clin Infect Dis ; 72(Suppl 3): S180-S187, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33906229

RESUMEN

BACKGROUND: Control of visceral leishmaniasis (VL) on the Indian subcontinent has been highly successful. Control efforts such as indoor residual spraying and active case detection will be scaled down or even halted over the coming years. We explored how after scale-down, potential recurrence of VL cases may be predicted based on population-based surveys of antibody or antigenemia prevalence. METHODS: Using a stochastic age-structured transmission model of VL, we predicted trends in case incidence and biomarker prevalence over time after scaling down control efforts when the target of 3 successive years without VL cases has been achieved. Next, we correlated biomarker prevalence with the occurrence of new VL cases within 10 years of scale-down. RESULTS: Occurrence of at least 1 new VL case in a population of 10 000 was highly correlated with the seroprevalence and antigenemia prevalence at the moment of scale-down, or 1 or 2 years afterward. Receiver operating characteristic curves indicated that biomarker prevalence in adults provided the most predictive information, and seroprevalence was a more informative predictor of new VL cases than antigenemia prevalence. Thresholds for biomarker prevalence to predict occurrence of new VL cases with high certainty were robust to variation in precontrol endemicity. CONCLUSIONS: The risk of recrudescence of VL after scaling down control efforts can be monitored and mitigated by means of population-based surveys. Our findings highlight that rapid point-of-care diagnostic tools to assess (preferably) seroprevalence or (otherwise) antigenemia in the general population could be a key ingredient of sustainable VL control.


Asunto(s)
Leishmaniasis Visceral , Adulto , Preescolar , Humanos , Incidencia , Estudios Longitudinales , Prevalencia , Estudios Seroepidemiológicos
12.
Clin Infect Dis ; 72(Suppl 3): S188-S194, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33906237

RESUMEN

The design and evaluation of control programs for soil-transmitted helminths (STHs) is based on surveillance data recording measurements of egg counts in the stool of infected individuals, which underpin estimates of the prevalence and average intensity of infection. There is considerable uncertainty around these measurements and their interpretation. The uncertainty is composed of several sources of measurement error and the limit of detection of fecal smear tests on the one hand, and key assumptions on STH biology on the other hand, including assumptions on the aggregation of worms within hosts and on the impact of density-dependent influences on worm reproduction. Using 2 independently developed models of STH transmission we show how different aspects of STH biology and human behavior impact on STH surveillance and control programs and how accounting for uncertainty can help to develop optimal and sustainable control strategies to meet the World Health Organization (WHO) morbidity target for STHs.


Asunto(s)
Helmintiasis , Helmintos , Animales , Biología , Estudios Transversales , Heces , Humanos , Prevalencia , Suelo
13.
Clin Infect Dis ; 72(Suppl 3): S165-S171, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33909070

RESUMEN

BACKGROUND: Due to spatial heterogeneity in onchocerciasis transmission, the duration of ivermectin mass drug administration (MDA) required for eliminating onchocerciasis will vary within endemic areas and the occurrence of transmission "hotspots" is inevitable. The geographical scale at which stop-MDA decisions are made will be a key driver in how rapidly national programs can scale down active intervention upon achieving the epidemiological targets for elimination. METHODS: We used 2 onchocerciasis models (EPIONCHO-IBM and ONCHOSIM) to predict the likelihood of achieving elimination by 2030 in Africa, accounting for variation in preintervention endemicity levels and histories of ivermectin treatment. We explore how decision making at contrasting geographical scales (community vs larger scale "project") changes projections on populations still requiring MDA or transitioning to post-treatment surveillance. RESULTS: The total population considered grows from 118 million people in 2020 to 136 million in 2030. If stop-MDA decisions are made at project level, the number of people requiring treatment declines from 69-118 million in 2020 to 59-118 million in 2030. If stop-MDA decisions are made at community level, the numbers decline from 23-81 million in 2020 to 15-63 million in 2030. The lower estimates in these prediction intervals are based on ONCHOSIM, the upper limits on EPIONCHO-IBM. CONCLUSIONS: The geographical scale at which stop-MDA decisions are made strongly determines how rapidly national onchocerciasis programs can scale down MDA programs. Stopping in portions of project areas or transmission zones would free up human and economic resources.


Asunto(s)
Oncocercosis , África , Toma de Decisiones , Humanos , Ivermectina/uso terapéutico , Administración Masiva de Medicamentos , Oncocercosis/tratamiento farmacológico
14.
Clin Infect Dis ; 72(12): e1047-e1055, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33289025

RESUMEN

BACKGROUND: Mass drug administration (MDA) with ivermectin is the main strategy for onchocerciasis elimination. Ivermectin is generally safe, but is associated with serious adverse events in individuals with high Loa loa microfilarial densities (MFD). Therefore, ivermectin MDA is not recommended in areas where onchocerciasis is hypo-endemic and L loa is co-endemic. To eliminate onchocerciasis in those areas, a test-and-not-treat (TaNT) strategy has been proposed. We investigated whether onchocerciasis elimination can be achieved using TaNT and the required duration. METHODS: We used the individual-based model ONCHOSIM to predict the impact of TaNT on onchocerciasis microfilarial (mf) prevalence. We simulated precontrol mf prevalence levels from 2% to 40%. The impact of TaNT was simulated under varying levels of participation, systematic nonparticipation, and exclusion from ivermectin resulting from high L loa MFD. For each scenario, we assessed the time to elimination, defined as bringing onchocerciasis mf prevalence below 1.4%. RESULTS: In areas with 30% to 40% precontrol mf prevalence, the model predicted that it would take between 14 and 16 years to bring the mf prevalence below 1.4% using conventional MDA, assuming 65% participation. TaNT would increase the time to elimination by up to 1.5 years, depending on the level of systematic nonparticipation and the exclusion rate. At lower exclusion rates (≤2.5%), the delay would be less than 6 months. CONCLUSIONS: Our model predicts that onchocerciasis can be eliminated using TaNT in L loa co-endemic areas. The required treatment duration using TaNT would be only slightly longer than in areas with conventional MDA, provided that participation is good.


Asunto(s)
Loiasis , Oncocercosis , Animales , Estudios de Factibilidad , Humanos , Ivermectina/uso terapéutico , Loa , Loiasis/diagnóstico , Loiasis/tratamiento farmacológico , Loiasis/epidemiología , Oncocercosis/tratamiento farmacológico , Oncocercosis/epidemiología , Oncocercosis/prevención & control , Prevalencia
15.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32984870

RESUMEN

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Asunto(s)
COVID-19 , Medicina Tropical , Humanos , Enfermedades Desatendidas/epidemiología , Pandemias , SARS-CoV-2
16.
J Infect Dis ; 221(Suppl 5): S510-S518, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32173745

RESUMEN

BACKGROUND: The World Health Organization recommends monitoring Onchocerca volvulus Ov16 serology in children aged <10 years for stopping mass ivermectin administration. Transmission models can help to identify the most informative age groups for serological monitoring and investigate the discriminatory power of serology-based elimination thresholds. Model predictions depend on assumed age-exposure patterns and transmission efficiency at low infection levels. METHODS: The individual-based transmission model, EPIONCHO-IBM, was used to assess (1) the most informative age groups for serological monitoring using receiver operating characteristic curves for different elimination thresholds under various age-dependent exposure assumptions, including those of ONCHOSIM (another widely used model), and (2) the influence of within-human density-dependent parasite establishment (included in EPIONCHO-IBM but not ONCHOSIM) on positive predictive values for different serological thresholds. RESULTS: When assuming EPIONCHO-IBM exposure patterns, children aged <10 years are the most informative for seromonitoring; when assuming ONCHOSIM exposure patterns, 5-14 year olds are the most informative (as published elsewhere). Omitting density-dependent parasite establishment results in more lenient seroprevalence thresholds, even for higher baseline infection prevalence and shorter treatment durations. CONCLUSIONS: Selecting appropriate seromonitoring age groups depends critically on age-dependent exposure patterns. The role of density dependence on elimination thresholds largely explains differing EPIONCHO-IBM and ONCHOSIM elimination predictions.


Asunto(s)
Envejecimiento , Modelos Biológicos , Oncocercosis/transmisión , Vigilancia de la Población/métodos , Pruebas Serológicas , Incertidumbre , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Factores Sexuales
17.
J Infect Dis ; 221(Suppl 5): S546-S553, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31841593

RESUMEN

BACKGROUND: Control of visceral leishmaniasis (VL) on the Indian subcontinent relies on prompt detection and treatment of symptomatic cases. Detection efforts influence the observed VL incidence and how well it reflects the underlying true incidence. As control targets are defined in terms of observed cases, there is an urgent need to understand how changes in detection delay and population coverage of improved detection affect VL control. METHODS: Using a mathematical model for transmission and control of VL, we predict the impact of reduced detection delays and/or increased population coverage of the detection programs on observed and true VL incidence and mortality. RESULTS: Improved case detection, either by higher coverage or reduced detection delay, causes an initial rise in observed VL incidence before a reduction. Relaxation of improved detection may lead to an apparent temporary (1 year) reduction in VL incidence, but comes with a high risk of resurging infection levels. Duration of symptoms in detected cases shows an unequivocal association with detection effort. CONCLUSIONS: VL incidence on its own is not a reliable indicator of the performance of case detection programs. Duration of symptoms in detected cases can be used as an additional marker of the performance of case detection programs.


Asunto(s)
Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/prevención & control , Erradicación de la Enfermedad , Humanos , Incidencia , India/epidemiología , Leishmaniasis Visceral/epidemiología , Modelos Biológicos
18.
J Infect Dis ; 221(Suppl 5): S503-S509, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31853554

RESUMEN

The low prevalence levels associated with lymphatic filariasis elimination pose a challenge for effective disease surveillance. As more countries achieve the World Health Organization criteria for halting mass treatment and move on to surveillance, there is increasing reliance on the utility of transmission assessment surveys (TAS) to measure success. However, the long-term disease outcomes after passing TAS are largely untested. Using 3 well-established mathematical models, we show that low-level prevalence can be maintained for a long period after halting mass treatment and that true elimination (0% prevalence) is usually slow to achieve. The risk of resurgence after achieving current targets is low and is hard to predict using just current prevalence. Although resurgence is often quick (<5 years), it can still occur outside of the currently recommended postintervention surveillance period of 4-6 years. Our results highlight the need for ongoing and enhanced postintervention monitoring, beyond the scope of TAS, to ensure sustained success.


Asunto(s)
Filariasis Linfática/sangre , Filariasis Linfática/parasitología , Microfilarias/aislamiento & purificación , Modelos Biológicos , Animales , Simulación por Computador , Erradicación de la Enfermedad , Filariasis Linfática/epidemiología , Humanos
19.
J Infect Dis ; 221(Suppl 5): S531-S538, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829425

RESUMEN

Starting and stopping preventive chemotherapy (PC) for soil-transmitted helminthiasis is typically based on the prevalence of infection as measured by Kato-Katz (KK) fecal smears. Kato-Katz-based egg counts can vary highly over repeated stool samples and smears. Consequentially, the sensitivity of KK-based surveys depends on the number of stool samples per person and the number of smears per sample. Given finite resources, collecting multiple samples and/or smears means screening fewer individuals, thereby lowering the statistical precision of prevalence estimates. Using population-level data from various epidemiological settings, we assessed the performance of different sampling schemes executed within the confines of the same budget. We recommend the use of single-slide KK for determining prevalence of moderate-to-heavy intensity infection and policy decisions for starting and continuing PC; more sensitive sampling schemes may be required for policy decisions involving stopping PC. Our findings highlight that guidelines should include specific guidance on sampling schemes.


Asunto(s)
Toma de Decisiones , Helmintiasis/prevención & control , Helmintiasis/transmisión , Suelo/parasitología , Conjuntos de Datos como Asunto , Heces/parasitología , Helmintiasis/epidemiología , Helmintiasis/parasitología , Humanos , Recuento de Huevos de Parásitos , Servicios Preventivos de Salud , Sensibilidad y Especificidad , Manejo de Especímenes
20.
PLoS Med ; 17(3): e1003042, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142509

RESUMEN

BACKGROUND: In the generalised epidemics of sub-Saharan Africa (SSA), human immunodeficiency virus (HIV) prevalence shows patterns of clustered micro-epidemics. We mapped and characterised these high-prevalence areas for young adults (15-29 years of age), as a proxy for areas with high levels of transmission, for 7 countries in Eastern and Southern Africa: Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia, and Zimbabwe. METHODS AND FINDINGS: We used geolocated survey data from the most recent United States Agency for International Development (USAID) demographic and health surveys (DHSs) and AIDS indicator surveys (AISs) (collected between 2008-2009 and 2015-2016), which included about 113,000 adults-of which there were about 53,000 young adults (27,000 women, 28,000 men)-from over 3,500 sample locations. First, ordinary kriging was applied to predict HIV prevalence at unmeasured locations. Second, we explored to what extent behavioural, socioeconomic, and environmental factors explain HIV prevalence at the individual- and sample-location level, by developing a series of multilevel multivariable logistic regression models and geospatially visualising unexplained model heterogeneity. National-level HIV prevalence for young adults ranged from 2.2% in Tanzania to 7.7% in Mozambique. However, at the subnational level, we found areas with prevalence among young adults as high as 11% or 15% alternating with areas with prevalence between 0% and 2%, suggesting the existence of areas with high levels of transmission Overall, 15.6% of heterogeneity could be explained by an interplay of known behavioural, socioeconomic, and environmental factors. Maps of the interpolated random effect estimates show that environmental variables, representing indicators of economic activity, were most powerful in explaining high-prevalence areas. Main study limitations were the inability to infer causality due to the cross-sectional nature of the surveys and the likely under-sampling of key populations in the surveys. CONCLUSIONS: We found that, among young adults, micro-epidemics of relatively high HIV prevalence alternate with areas of very low prevalence, clearly illustrating the existence of areas with high levels of transmission. These areas are partially characterised by high economic activity, relatively high socioeconomic status, and risky sexual behaviour. Localised HIV prevention interventions specifically tailored to the populations at risk will be essential to curb transmission. More fine-scale geospatial mapping of key populations,-such as sex workers and migrant populations-could help us further understand the drivers of these areas with high levels of transmission and help us determine how they fuel the generalised epidemics in SSA.


Asunto(s)
Epidemias , Infecciones por VIH/epidemiología , Infecciones por VIH/transmisión , Adolescente , Conducta del Adolescente , Adulto , África del Sur del Sahara/epidemiología , Distribución por Edad , Factores de Edad , Estudios Transversales , Ambiente , Femenino , Sistemas de Información Geográfica , Infecciones por VIH/diagnóstico , Conductas Relacionadas con la Salud , Encuestas Epidemiológicas , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Modelos Teóricos , Prevalencia , Medición de Riesgo , Factores de Riesgo , Determinantes Sociales de la Salud , Factores Socioeconómicos , Análisis Espacial , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA