Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 448-464.e24, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007417

RESUMEN

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.


Asunto(s)
Chara/genética , Genoma de Planta , Evolución Biológica , Pared Celular/metabolismo , Chara/crecimiento & desarrollo , Embryophyta/genética , Redes Reguladoras de Genes , Pentosiltransferasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
2.
Trends Genet ; 39(7): 545-559, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36801111

RESUMEN

The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Genómica , Genoma
3.
Semin Cell Dev Biol ; 134: 37-58, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35292191

RESUMEN

The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.


Asunto(s)
Evolución Biológica , Embryophyta , Plantas , Filogenia
4.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059656

RESUMEN

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Asunto(s)
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinación , Procesos Heterotróficos , Lipasa/metabolismo , Plantones/metabolismo , Esporas/metabolismo , Bryopsida/metabolismo , Semillas/metabolismo
5.
Plant J ; 114(4): 875-894, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36891885

RESUMEN

Significant changes have occurred in plant cell wall composition during evolution and diversification of tracheophytes. As the sister lineage to seed plants, knowledge on the cell wall of ferns is key to track evolutionary changes across tracheophytes and to understand seed plant-specific evolutionary innovations. Fern cell wall composition is not fully understood, including limited knowledge of glycoproteins such as the fern arabinogalactan proteins (AGPs). Here, we characterize the AGPs from the leptosporangiate fern genera Azolla, Salvinia, and Ceratopteris. The carbohydrate moiety of seed plant AGPs consists of a galactan backbone including mainly 1,3- and 1,3,6-linked pyranosidic galactose, which is conserved across the investigated fern AGPs. Yet, unlike AGPs of angiosperms, those of ferns contained the unusual sugar 3-O-methylrhamnose. Besides terminal furanosidic arabinose, Ara (Araf), the main linkage type of Araf in the ferns was 1,2-linked Araf, whereas in seed plants 1,5-linked Araf is often dominating. Antibodies directed against carbohydrate epitopes of AGPs supported the structural differences between AGPs of ferns and seed plants. Comparison of AGP linkage types across the streptophyte lineage showed that angiosperms have rather conserved monosaccharide linkage types; by contrast bryophytes, ferns, and gymnosperms showed more variability. Phylogenetic analyses of glycosyltransferases involved in AGP biosynthesis and bioinformatic search for AGP protein backbones revealed a versatile genetic toolkit for AGP complexity in ferns. Our data reveal important differences across AGP diversity of which the functional significance is unknown. This diversity sheds light on the evolution of the hallmark feature of tracheophytes: their elaborate cell walls.


Asunto(s)
Helechos , Helechos/genética , Filogenia , Proteínas de Plantas/química , Glicoproteínas/metabolismo , Pared Celular/metabolismo
6.
New Phytol ; 243(2): 543-559, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515227

RESUMEN

Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.


Asunto(s)
Cloroplastos , Homeostasis , Cloroplastos/metabolismo , Iones/metabolismo , Transporte Iónico , Fotosíntesis
7.
New Phytol ; 241(2): 703-714, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37915144

RESUMEN

Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions. ABA elicits its effects by binding to a family of soluble receptors found in monomeric and dimeric states, differing in their affinity to ABA and co-receptors. However, the in vivo significance of the biochemical differences between these receptors remains unclear. We took a gain-of-function approach to study receptor-specific functionality. First, we introduced activating mutations that enforce active ABA-bound receptor conformation. We then transformed Arabidopsis ABA-deficient mutants with the constitutive receptors and monitored suppression of the ABA deficiency phenotype. Our findings suggest that PYL4 and PYL5, monomeric ABA receptors, have differential activity in regulating transpiration and transcription of ABA biosynthesis and stress response genes. Through genetic and metabolic data, we demonstrate that PYR1, but not PYL5, is sufficient to activate the ABA positive feedback mechanism. We propose that ABA signaling - from perception to response - flows differently when triggered by different PYLs, due to tissue and transcription barriers, thus resulting in distinct circuitries.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo
8.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501480

RESUMEN

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Asunto(s)
Ceras , Ceras/metabolismo , Alcoholes/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Vías Biosintéticas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Aciltransferasas/metabolismo , Aciltransferasas/genética , Evolución Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutación/genética
9.
Plant Cell ; 33(9): 3076-3103, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34244767

RESUMEN

Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Gotas Lipídicas/fisiología , Biogénesis de Organelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
10.
Nat Chem Biol ; 18(4): 368-375, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165445

RESUMEN

We recently reported the discovery of a lysine-cysteine redox switch in proteins with a covalent nitrogen-oxygen-sulfur (NOS) bridge. Here, a systematic survey of the whole protein structure database discloses that NOS bridges are ubiquitous redox switches in proteins of all domains of life and are found in diverse structural motifs and chemical variants. In several instances, lysines are observed in simultaneous linkage with two cysteines, forming a sulfur-oxygen-nitrogen-oxygen-sulfur (SONOS) bridge with a trivalent nitrogen, which constitutes an unusual native branching cross-link. In many proteins, the NOS switch contains a functionally essential lysine with direct roles in enzyme catalysis or binding of substrates, DNA or effectors, linking lysine chemistry and redox biology as a regulatory principle. NOS/SONOS switches are frequently found in proteins from human and plant pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and also in many human proteins with established roles in gene expression, redox signaling and homeostasis in physiological and pathophysiological conditions.


Asunto(s)
COVID-19 , Cisteína , Cisteína/química , Humanos , Lisina/metabolismo , Oxidación-Reducción , SARS-CoV-2
11.
Ann Bot ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832756

RESUMEN

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). While Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of likely more than 5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes-and thus, particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae to land plants but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits such as intricate signaling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants-but were bequeathed from their algal progenitors.

12.
Physiol Plant ; 176(2): e14244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38480467

RESUMEN

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Plantas , Archaea/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo
13.
Plant J ; 112(2): 518-534, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36050843

RESUMEN

There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cyperus , Proteoma/metabolismo , Arabidopsis/genética , Ácido Abscísico/metabolismo , Espectrometría de Masas en Tándem , Semillas/genética , Cyperus/genética , Cyperus/metabolismo , Factores de Transcripción/metabolismo , Agua/metabolismo , Lípidos , Proteínas de Arabidopsis/metabolismo
14.
Plant Cell Environ ; 46(9): 2884-2908, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394786

RESUMEN

Despite its small size, the water fern Azolla is a giant among plant symbioses. Within each of its leaflets, a specialized leaf cavity is home to a population of nitrogen-fixing cyanobacteria (cyanobionts). Although a number of plant-cyanobiont symbioses exist, Azolla is unique in that its symbiosis is perpetual: the cyanobionts are inherited during sexual and vegetative propagation. What underpins the communication between the two partners? In angiosperms, the phytohormone salicylic acid (SA) is a well-known regulator of plant-microbe interactions. Using high-performance liquid chromatography-tandem mass spectrometry, we pinpoint the presence of SA in the fern. Comparative genomics and phylogenetics on SA biosynthesis genes across Chloroplastida reveal that the entire Phenylalanine ammonia-lyase-dependent pathway likely existed in the last common ancestor of land plants. Indeed, Azolla filiculoides secondarily lost its isochorismate synthase but has the genetic competence to derive SA from benzoic acid; the presence of SA in artificially cyanobiont-free Azolla supports the existence of this route. Global gene expression data and SA levels from cyanobiont-containing and -free A. filiculoides link SA synthesis with the symbioses: SA appears to induce cyanobacterial proliferation, whereas removal of the symbiont results in reduced SA levels in a nitrogen-dependent manner.


Asunto(s)
Cianobacterias , Helechos , Simbiosis/genética , Ácido Salicílico/metabolismo , Cianobacterias/genética , Helechos/metabolismo , Plantas , Nitrógeno/metabolismo
15.
Am J Bot ; 110(5): e16175, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37247371

RESUMEN

Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.


Asunto(s)
Chlorophyta , Embryophyta , Evolución Biológica , Ecosistema , Embryophyta/genética , Filogenia , Plantas/genética , Chlorophyta/genética , Evolución Molecular
16.
J Vasc Interv Radiol ; 34(10): 1777-1784.e4, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37391072

RESUMEN

PURPOSE: To correlate irreversible electroporation (IRE) procedural resistance changes with survival outcomes and the IRE-induced systemic immune response in patients with locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS: Data on IRE procedural tissue resistance (R) features and survival outcomes were collected from patients with LAPC treated within the context of 2 prospective clinical trials in a single tertiary center. Preprocedural and postprocedural peripheral blood samples were prospectively collected for immune monitoring. The change (ie, decrease) in R during the first 10 test pulses (ΔR10p) and during the total procedure (ΔRtotal) were calculated. Patients were divided in 2 groups on the basis of the median change in R (large ΔR vs small ΔR) and compared for differences in overall survival (OS) and progression-free survival and immune cell subsets. RESULTS: A total of 54 patients were included; of these, 20 underwent immune monitoring. Linear regression modeling showed that the first 10 test pulses reflected the change in tissue resistance during the total procedure appropriately (P < .001; R2 = 0.91). A large change in tissue resistance significantly correlated with a better OS (P = .026) and longer time to disease progression (P = .045). Furthermore, a large change in tissue resistance was associated with CD8+ T cell activation through significant upregulation of Ki-67+ (P = .02) and PD-1+ (P = .047). Additionally, this subgroup demonstrated significantly increased expression of CD80 on conventional dendritic cells (cDC1; P = .027) and PD-L1 on immunosuppressive myeloid-derived suppressor cells (P = .039). CONCLUSIONS: IRE procedural resistance changes may serve as a biomarker for survival and IRE-induced systemic CD8+ T cell and cDC1 activation.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Estudios Prospectivos , Neoplasias Pancreáticas/terapia , Electroporación/métodos , Inmunidad Adaptativa , Biomarcadores , Neoplasias Pancreáticas
17.
Physiol Plant ; 175(6): e14056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148198

RESUMEN

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.


Asunto(s)
Embryophyta , Streptophyta , Desecación , Streptophyta/genética , Streptophyta/metabolismo , Plantas , Fotosíntesis
18.
BJOG ; 130(13): 1620-1628, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37280664

RESUMEN

OBJECTIVE: To evaluate the incidence, diagnostic management strategies and clinical outcomes of women with spontaneous haemoperitoneum in pregnancy (SHiP) and reassess the definition of SHiP. DESIGN: A population-based cohort study using the Netherlands Obstetric Surveillance System (NethOSS). SETTING: Nationwide, the Netherlands. POPULATION: All pregnant women between April 2016 and April 2018. METHODS: This is a case study of SHiP using the monthly registry reports of NethOSS. Complete anonymised case files were obtained. A newly introduced online Delphi audit system (DAS) was used to evaluate each case, to make recommendations on improving the management of SHiP and to propose a new definition of SHiP. MAIN OUTCOME MEASURES: Incidence and outcomes, lessons learned about clinical management and the critical appraisal of the current definition of SHiP. RESULTS: In total, 24 cases were reported. After a Delphi procedure, 14 cases were classified as SHiP. The nationwide incidence was 4.9 per 100 000 births. Endometriosis and conceiving after artificial reproductive techniques were identified as risk factors. No maternal and three perinatal deaths occurred. Based on the DAS, adequate imaging of free intra-abdominal fluid, and identifying and treating women with signs of hypovolemic shock could improve the early detection and management of SHiP. A revised definition of SHiP was proposed, excluding the need for surgical or radiological intervention. CONCLUSIONS: SHiP is a rare and easily misdiagnosed condition that is associated with high perinatal mortality. To improve care, better awareness among healthcare workers is needed. The DAS is a sufficient tool to audit maternal morbidity and mortality.


Asunto(s)
Hemoperitoneo , Muerte Perinatal , Complicaciones del Embarazo , Femenino , Humanos , Embarazo , Estudios de Cohortes , Hemoperitoneo/diagnóstico , Hemoperitoneo/epidemiología , Hemoperitoneo/etiología , Parto , Mortalidad Perinatal , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/epidemiología , Complicaciones del Embarazo/etiología , Recién Nacido
19.
Eur Addict Res ; 29(5): 313-322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37669628

RESUMEN

INTRODUCTION: Adults in opiate agonist treatment (OAT) often have a background of adverse childhood experiences (ACEs) and are more likely to be exposed to a variety of risks that may trigger post-traumatic stress disorder (PTSD). Summative ACE scores are often used to identify individuals at risk of PTSD and continued substance use. What has not been addressed is whether specific ACE factors are exerting a greater influence on the individual. This study investigated whether specific ACEs predicted PTSD, and current continued substance use among adults in long-term OAT. METHODS: An analysis of data that were collected at the follow-up stage of a study among 131 adults who attended OAT was conducted. Participants attended one of six OAT settings, covering 45% (n = 890) of clients in a defined area of Dublin, Ireland in 2017. Interviews were conducted with 104 participants, 66 males (63%) and 38 females (37%), with an average age of 43 years (SD = 7.4). The Adverse Childhood Questionnaire (ACQ); PTSD checklist (PCL-5); heroin; tranquilliser; cannabis; alcohol; and cocaine used in the previous 28 days were measured using the quantity used score within the Opiate Treatment Index. Socio-demographics and age of first use of these four substances were also collected. The analysis has focussed on relating ACEs to PTSD, age of first drugs use, and current drug use of the participants. RESULTS: Bivariate analysis showed that the summative ACQ score was significantly correlated with age of first opiate use (p = 0.004). Multiple regression analysis showed that the summative ACQ score and tranquilliser use predicted higher levels of PTSD (R2 = 0.50). Four specific ACEs predicted 54% of the variance in PTSD, these were feeling unloved (ß = 0.328) living with a household member who had a problem with alcohol or used illicit street drugs (ß = 0.280); verbal abuse (ß = 0.219); and living with a person who had a mental illness (ß = 0.197). CONCLUSIONS: While a summation of all ten ACEs predicted higher levels of PTSD, the factor "feeling unloved" as a child provided the single strongest predictor and may represent an overarching risk of PTSD and continued substance use in later life among adults in treatment for an opiate use disorder.


Asunto(s)
Experiencias Adversas de la Infancia , Alcaloides Opiáceos , Trastornos Relacionados con Sustancias , Adulto , Masculino , Niño , Femenino , Humanos , Emociones , Analgésicos Opioides/efectos adversos
20.
Environ Exp Bot ; 214: 105456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780400

RESUMEN

All land plants modulate their growth and physiology through intricate signaling cascades. The majority of these are at least modulated-and often triggered-by phytohormones. Over the past decade, it has become apparent that some phytohormones have an evolutionary origin that runs deeper than plant terrestrialization-many emerged in the streptophyte algal progenitors of land plants. Ethylene is such a case. Here we synthesize the current knowledge on the evolution of the phytohormone ethylene and speculate about its deeply conserved role in adjusting stress responses of streptophytes for more than half a billion years of evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA