Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 43(4): 1609-1616, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32130595

RESUMEN

Mercury is widely found in nature, however, in low concentrations, but anthropological activities have increased its concentration considerably. This causes various environmental hazards and human health. Many substances are capable of reversing the toxicity of mercuric chloride in the environment. The aim of the present study was to determine the chelating effect of vanillin, as well as to evaluate its capacity for cytoprotection in prokaryotic and eukaryotic plant models. Chelating activity was determined from vanillin's ability to reduce iron III ions. To evaluate cytoprotection in a unicellular prokaryotic and eukaryotic model, Escherichia coli and Candida albicans, respectively, were used. And to evaluate the cytoprotective activity in vegetables, lettuce seeds were submitted to different concentrations of mercuric chloride and its association with the sub-allelopathic concentration of vanillin (32 µg/mL). Vanillin has been found to have antioxidant activity as it can reduce iron III ions. The use of vanillin also allows for better growth and development of Lactuca sativa seed root and stem, also allowing better preservation of its biochemical structures. These results are quite important, as environmental contamination by heavy metals has increased dramatically and finding a viable alternative to grow vegetables in contaminated areas is very valid.


Asunto(s)
Benzaldehídos/química , Biodegradación Ambiental , Quelantes/química , Cloruro de Mercurio/toxicidad , Antioxidantes/química , Compuestos Férricos/química , Humanos , Lactuca , Mercurio , Metales Pesados/análisis , Semillas/química , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA