Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 139(21): 3166-3180, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35030250

RESUMEN

Neutrophils are important effector cells in the host defense against invading microorganisms. One of the mechanisms they use to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli; that is, phorbol 12-myristate 13-acetate, monosodium urate crystals, and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either actin-related protein 2/3 complex subunit 1B or megakaryoblastic leukemia 1 deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics, there is a lack of translocation of neutrophil elastase to the nucleus, which may explain the impaired NET formation. Collectively, our data show the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation.


Asunto(s)
Trampas Extracelulares , Citoesqueleto de Actina , Actinas/metabolismo , Candida albicans , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo
2.
Immunity ; 43(4): 622-4, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26488810

RESUMEN

Whereas dendritic cells (DCs) can be activated in many ways to trigger immunity, hardly anything is known about the mechanisms that counterbalance DC activation. Cyster and colleagues now demonstrate that the "self" molecule CD47 on erythrocytes critically restricts splenic DC activation.


Asunto(s)
Inmunidad Adaptativa , Antígeno CD47/sangre , Células Dendríticas/inmunología , Eritrocitos/inmunología , Receptores Inmunológicos/inmunología , Autotolerancia/inmunología , Bazo/inmunología , Animales
4.
Haematologica ; 108(11): 3086-3094, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259576

RESUMEN

Abnormal retention of mitochondria in mature red blood cells (RBC) has been recently reported in sickle cell anemia (SCA) but their functionality and their role in the pathophysiology of SCA remain unknown. The presence of mitochondria within RBC was determined by flow cytometry in 61 SCA patients and ten healthy donors. Patients were classified according to the percentage of mature RBC with mitochondria contained in the whole RBC population: low (0-4%), moderate (>4% and <8%), or high level (>8%). RBC rheological, hematological, senescence and oxidative stress markers were compared between the three groups. RBC senescence and oxidative stress markers were also compared between mature RBC containing mitochondria and those without. The functionality of residual mitochondria in sickle RBC was measured by high-resolution respirometry assay and showed detectable mitochondrial oxygen consumption in sickle mature RBC but not in healthy RBC. Increased levels of mitochondrial reactive oxygen species were observed in mature sickle RBC when incubated with Antimycin A versus without. In addition, mature RBC retaining mitochondria exhibited greater levels of reactive oxygen species compared to RBC without mitochondria, as well as greater Ca2+, lower CD47 and greater phosphatidylserine exposure. Hematocrit and RBC deformability were lower, and the propensity of RBC to sickle under deoxygenation was higher, in the SCA group with a high percentage of mitochondria retention in mature RBC. This study showed the presence of functional mitochondria in mature sickle RBC, which could favor RBC sickling and accelerate RBC senescence, leading to increased cellular fragility and hemolysis.


Asunto(s)
Anemia de Células Falciformes , Hemólisis , Humanos , Especies Reactivas de Oxígeno , Eritrocitos , Estrés Oxidativo , Mitocondrias
5.
Transfus Med ; 33(3): 257-262, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919690

RESUMEN

OBJECTIVE: The study aimed to determine the impact of Red Blood Cells (RBCs) generated from peripheral blood mononuclear cells (PBMCs) on T cell proliferation and host response following whole blood stimulation. BACKGROUND: Culturing RBCs is a potential solution for donor shortage. The impact of immature cultured RBCs which express CD71+ on host immune response is not known. METHODS/MATERIALS: PBMCs were seeded in an erythroid expansion medium. CD71+ cells were isolated at days 14 and 21 of culture and incubated with either purified T cells or with LPS-stimulated whole blood. Controls were incubated with medium. RESULTS: At day 9, the percentage of cells that expressed CD45 and CD71 reached to the highest level (32.9%, IQR; 26.2-39.05) while the percentage of cells that expressed CD71 and CD235a reached to the highest level on day 17 (70.2%, IQR; 66.1-72.8). Incubation of T cells with days 14 CD71+ cells and day 21 CD71+ cells increased T cell proliferation. In a whole blood stimulation assay, day 21 CD71+ cells, but not day 14 CD71+ cells, inhibited the production of IL-6 and TNFα. CONCLUSION: Cultured erythroid cells can modulate the immune response by promoting T cell proliferation and inhibiting cytokine secretions following whole blood stimulation.


Asunto(s)
Células Eritroides , Leucocitos Mononucleares , Humanos , Células Cultivadas , Eritrocitos , Inmunidad
6.
Transfus Med Hemother ; 50(4): 321-329, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37767280

RESUMEN

Introduction: Neutrophils promote chronic inflammation and release neutrophil extracellular traps (NETs) that can drive inflammatory responses. Inflammation influences progression of sickle cell disease (SCD), and a role for NETs has been suggested in the onset of vaso-occlusive crisis (VOC). We aimed to identify factors in the circulation of these patients that provoke NET release, with a focus on triggers associated with hemolysis. Methods: Paired serum and plasma samples during VOC and steady state of 18 SCD patients (HbSS/HbSß0-thal and HbSC/HbSß+-thal) were collected. Cell-free heme, hemopexin, and labile plasma iron have been measured in the plasma samples of the SCD patients. NETs formation by human neutrophils from healthy donors induced by serum of SCD patients was studied using confocal microscopy and staining for extracellular DNA using Sytox, followed by quantification of surface coverage using ImageJ. Results: Eighteen patients paired samples obtained during VOC and steady state were available (11 HbSS/HbSß0-thal and 7 HbSC/HbSß+-thal). We observed high levels of systemic heme and iron, concomitant with low levels of the heme-scavenger hemopexin in sera of patients with SCD, both during VOC and in steady state. In our in vitro experiments, neutrophils released NETs when exposed to sera from SCD patients. The release of NETs was associated with high levels of circulating iron in these sera. Although hemin triggered NET formation in vitro, addition of hemopexin to scavenge heme did not suppress NET release in SCD sera. By contrast, the iron scavengers deferoxamine and apotransferrin attenuated NET formation in a significant proportion of SCD sera. Discussion: Our results suggest that redox-active iron in the circulation of non-transfusion-dependent SCD patients activates neutrophils to release NETs, and hence, exerts a direct pro-inflammatory effect. Thus, we propose that chelation of iron requires further investigation as a therapeutic strategy in SCD.

7.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138970

RESUMEN

Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Ácido N-Acetilneuramínico , Antígeno de Macrófago-1 , Neoplasias/tratamiento farmacológico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Microambiente Tumoral
8.
Blood ; 135(24): 2171-2181, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32128589

RESUMEN

Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mutación del Sistema de Lectura , Neutrófilos/fisiología , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Citoesqueleto de Actina/química , Movimiento Celular/genética , Movimiento Celular/fisiología , Consanguinidad , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Masculino , Linaje , Polimerizacion , Enfermedades de Inmunodeficiencia Primaria/terapia , Proteómica , Factores de Transcripción/metabolismo
9.
Transfusion ; 62(2): 324-335, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971005

RESUMEN

BACKGROUND: Transfusion is very common in the intensive care unit (ICU), but practice is highly variable, as has recently been shown in non-bleeding critically ill patients practices survey. Bleeding patients in ICU require different blood products across a range of specific patient categories. We hypothesize that a large variety in transfusion practice exists in bleeding patients. STUDY DESIGN AND METHODS: An international online survey was performed among physicians working in the ICU. Transfusion practice in massively and non-massively bleeding patients was examined, including transfusion ratios, thresholds, and the presence of transfusion guidelines. RESULTS: Six hundred eleven respondents filled in the survey of which 401 could be analyzed, representing 64 countries. Among the respondents, 52% had a massive transfusion protocol (MTP) available at their ICU. In massively bleeding patients, 46% of the respondents used fixed transfusion component ratios. Of those who used fixed blood ratios, the 1:1:1 ratio (red blood cell [RBC] concentrates: plasma: platelet concentrates) was most commonly used (33%). The presence of an MTP was associated with a more frequent use of fixed ratios (p < .001). For RBC transfusion in the general non-massively bleeding ICU population, a hemoglobin (Hb) threshold of 7.0[7.0-7.3] g/dl was reported. In the general ICU population, a platelet count threshold of 50[26-50] × 109 /L was applied. DISCUSSION: Half of the centers had no massive transfusion protocol available. Transfusion practice in massively bleeding critically ill patients is highly variable and driven by the presence of an MTP. In the general non-massively bleeding ICU population restrictive transfusion triggers were chosen.


Asunto(s)
Transfusión Sanguínea , Enfermedad Crítica , Enfermedad Crítica/terapia , Transfusión de Eritrocitos/métodos , Hemorragia/terapia , Humanos , Unidades de Cuidados Intensivos , Encuestas y Cuestionarios
10.
Transfusion ; 62(10): 1984-1996, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35916478

RESUMEN

BACKGROUND: Red blood cell (RBC) transfusions are an important treatment modality for patients with sickle cell disease (SCD) and ß-thalassemia. A subgroup of these patients relies on a chronic RBC transfusion regimen. Little is known about RBC survival (RCS) of the transfused allogeneic RBCs. In this study, we aimed to study the RCS kinetics of transfused RBCs in SCD and ß-thalassemia and to investigate factors that determine RCS. METHODS AND MATERIALS: We performed a prospective cohort study on fourteen adults with SCD and ß-thalassemia disease receiving a chronic transfusion regimen. RCS and the influence of donor and patient characteristics on RCS were assessed by simultaneous transfusion of two allogeneic RBCs using RBC biotinylation. Phenotyping of well-known RBC markers over time was performed using flow cytometry. RESULTS: RCS of the two transfused RBC units was similar in most patients. Although intra-individual variation was small, inter-individual variation in RCS kinetics was observed. Most patients demonstrated a non-linear trend in RCS that was different from the observed linear RCS kinetics in healthy volunteers. After an initial slight increase in the proportion of biotinylated RBCs during the first 24 h, a rapid decrease within the first 10-12 days was followed by a slower clearance rate. CONCLUSION: These are the first data to demonstrate that patient-related factors largely determine post-transfusion RCS behavior of donor RBC in SCD and ß-thalassemia, while donor factors exert a negligible effect. Further assessment and modeling of RCS kinetics and its determinants in SCD and ß-thalassemia patients may ultimately improve transfusion therapy.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Adulto , Anemia de Células Falciformes/terapia , Biotina , Eritrocitos , Humanos , Estudios Prospectivos , Talasemia beta/terapia
11.
Transfusion ; 62(12): 2490-2501, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36300793

RESUMEN

BACKGROUND: Transfusion-related acute lung injury (TRALI) is a severe complication of blood transfusion that is thought of as a two-hit event: first the underlying patient condition (e.g., sepsis), and then the transfusion. Transfusion factors include human leukocyte antigen antibodies or biologic response modifiers (BRMs) accumulating during storage. Preclinical studies show an increased TRALI risk with longer stored platelets, clinical studies are conflicting. We aim to discover whether longer platelet concentrate (PC) storage time increases TRALI risk in a controlled human experiment. STUDY DESIGN AND METHODS: In a randomized controlled trial, 18 healthy male volunteers received a first hit of experimental endotoxemia (2 ng/kg lipopolysaccharide), and a second hit of fresh (2-day old) or aged (7-day old) autologous PC, or physiological saline. After 6 h, changes in TRALI pathways were determined using spirometry, chest X-ray, and bronchoalveolar lavage (BAL). RESULTS: All subjects reacted adequately to lipopolysaccharide infusion and satisfied SIRS criteria (increased pulse [>90/min] and temperature [>38°C]). There were no differences between the saline, fresh, and aged PC groups in BAL-fluid protein (95 ± 33 µg/ml; 83 ± 21 µg/ml and 104 ± 29 µg/ml, respectively) and relative neutrophil count (1.5 ± 0.5%; 1.9 ± 0.8% and 1.3 ± 0.8%, respectively), nor in inflammatory BAL-fluid BRMs (Interleukin-6, CXCL8, TNFα , and myeloperoxidase), clinical respiratory parameters, and spirometry results. All chest X-rays were normal. CONCLUSIONS: In a human endotoxemia model of autologous platelet transfusion, with an adequate first hit and platelet storage lesion, transfusion of 7-day-old PC does not increase pulmonary inflammation compared with 2-day-old PC.


Asunto(s)
Transfusión de Plaquetas , Lesión Pulmonar Aguda Postransfusional , Masculino , Humanos , Transfusión de Plaquetas/efectos adversos , Lesión Pulmonar Aguda Postransfusional/etiología
12.
Vox Sang ; 117(1): 64-70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34196412

RESUMEN

BACKGROUND AND OBJECTIVES: Red blood cell (RBC) transfusion is a frequently applied intervention in an intensive care unit. However, transfusion is associated with adverse outcomes including organ failure and thrombo-embolic events. Mechanisms of these effects are not known but may be related to activation of the endothelium or of the coagulation or inflammatory system. We hypothesized that a RBC transfusion in the critically ill would result in further activation of these systems. MATERIALS AND METHODS: In 74 non-bleeding critically ill patients receiving one RBC unit, markers of inflammation, endothelial cell activation and coagulation were measured before transfusion, at 1 h after transfusion and 24 h after transfusion. The impact of disease severity of the recipient on these changes was assessed by comparing septic and non-septic patients (according to sepsis-3 definition) and by correlation of biomarkers with the sequential organ failure assessment (SOFA) score. RESULTS: Levels of von Willebrand Factor (vWF), soluble ICAM-1, soluble thrombomodulin, fibrinogen and d-dimer were already high at baseline, whereas ADAMTS13 levels were low. VWF levels increased significantly 24 h after RBC transfusion (median 478% (338-597) vs. 526% (395-623), p = 0.009). The other biomarkers did not change significantly. Post transfusion change was not dependent on the presence of sepsis and was not correlated with SOFA score. CONCLUSION: RBC transfusion in critically ill patients was associated with an increase in circulating vWF levels, suggesting a further increase in activation of the endothelium, a finding that was independent of the presence of sepsis or organ injury level.


Asunto(s)
Enfermedad Crítica , Transfusión de Eritrocitos , Células Endoteliales , Humanos , Inflamación , Unidades de Cuidados Intensivos
13.
Vox Sang ; 117(3): 371-378, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34396543

RESUMEN

BACKGROUND AND OBJECTIVES: Transfusion-associated circulatory overload (TACO) is the primary cause of transfusion-related mortality. Speed and volume of transfusion are major risk factors. The aim of this study was to investigate the interaction of red blood cell (RBC) transfusion speed and volume on the development of TACO. MATERIALS AND METHODS: A validated model for TACO in anaemic Lewis rats with an acute myocardial infarction was used. The effect on pulmonary hydrostatic pressure of one, two or four units of packed RBCs transfused in either 30 or 60 min was evaluated (3.3-26.6 ml·kg-1 ·hr-1 ). Pulmonary capillary pressure was measured as left ventricular end-diastolic pressure (LVEDP). Cardiac stress biomarkers atrial natriuretic-peptide (ANP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured 1-h post-transfusion. RESULTS: Thirty animals were included (n = 5 per group). Transfusion of RBCs increased LVEDP in a volume-dependent manner (ΔLVEDP [mmHg]: -0.95, +0.50, +6.26, p < 0.001). Fast transfusion increased overall ΔLVEDP by +3.5 mmHg and up to +11.8 mmHg in the four units' group (p = 0.016). Doubling transfusion speed increased ΔLVEDP more than doubling volume in the larger volume groups. No difference in ANP or NT-proBNP were seen in high transfusion volume or groups. CONCLUSION: Transfusion volume dose-dependently increased LVEDP, with speed of transfusion rapidly elevating LVEDP at higher transfusion volumes. ANP and NT-proBNP were not impacted by transfusion volume or speed in this model. TACO is seen as purely volume overload, however, this study emphasizes that limiting transfusion speed, as a modifiable risk factor, might aid in preventing TACO.


Asunto(s)
Reacción a la Transfusión , Animales , Transfusión Sanguínea , Transfusión de Eritrocitos/efectos adversos , Ratas , Ratas Endogámicas Lew , Factores de Riesgo , Reacción a la Transfusión/etiología
14.
Transfus Med Hemother ; 49(2): 98-105, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35611381

RESUMEN

Background: Observational studies suggest that sex-mismatched transfusion is associated with increased mortality. Mechanisms driving mortality are not known but may include endothelial activation. The aim of this study is to investigate the effects of sex-mismatched red blood cell (RBC) transfusions on endothelial cell activation markers in critically ill patients. Study Design and Methods: In patients admitted to the intensive care unit who received a single RBC unit, blood samples were drawn before (T0), 1 h after (T1), and 24 h after transfusion (T24) for analysis of soluble syndecan-1, soluble intercellular adhesion molecule-1, soluble thrombomodulin (sTM), von Willebrand factor antigen, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα). Changes in the levels of these factors were compared between sex-matched and sex-mismatched groups. Results: Of 69 included patients, 32 patients were in the sex-matched and 37 patients were in the sex-mismatched group. Compared to baseline, sex-matched transfusion was associated with significant reduction in sTM level (p value = 0.03). Between-group comparison showed that levels of syndecan-1 and sTM were significantly higher in the sex-mismatched group compared to the sex-matched group at T24 (p value = 0.04 and 0.01, respectively). Also, TNFα and IL-6 levels showed a statistically marginal significant increase compared to baseline in the sex-mismatched group at T24 (p value = 0.06 and 0.05, respectively), but not in the sex-matched group. Discussion: Transfusion of a single sex-mismatched RBC unit was associated with higher syndecan-1 and sTM levels compared to transfusion of sex-matched RBC unit. These findings may suggest that sex-mismatched RBC transfusion is associated with endothelial activation.

15.
Curr Opin Hematol ; 28(6): 438-444, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494977

RESUMEN

PURPOSE OF REVIEW: Red blood cell (RBC) clearance has been studied for decades in many different pathologies, which has revealed different routes of RBC degradation, depending on the situation. This review summarizes the latest mechanistic insights on RBC clearance in different contexts; during homeostatic removal, immune-mediated destruction, and systemic inflammation. RECENT FINDINGS: Besides the recognition of a variety of potential 'eat me' signals on RBCs, recent evidence suggests that normal RBC degradation is driven by the increase of the adhesive properties of RBCs, mediating the retention in the spleen and leading to RBC hemolysis. Furthermore, immune-mediated degradation of RBCs seems to be fine-tuned by the balance between the density of the antigens expressed on RBCs and the presence of 'don't eat me' signals. Moreover, besides RBC clearance by macrophages, neutrophils seem to play a much more prominent role in immune-mediated RBC removal than anticipated. Lastly, RBC clearance during systemic inflammation appears to be driven by a combination of extreme macrophage activity in response to proinflammatory cytokines as well as direct damage of RBC by the inflammation or inflammatory agent. SUMMARY: Recent studies on RBC clearance have expanded our knowledge on their destruction in different contexts.


Asunto(s)
Eritrocitos , Eritrocitos/citología , Hemólisis , Humanos , Inflamación/sangre , Macrófagos/citología , Neutrófilos/citología
16.
Eur J Immunol ; 50(8): 1113-1125, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32289181

RESUMEN

IgG4 antibodies are unique to humans. IgG4 is associated with tolerance during immunotherapy in allergy, but also with pathology, as in pemphigus vulgaris and IgG4-related disease. Its induction is largely restricted to nonmicrobial antigens, and requires repeated or prolonged antigenic stimulation, for reasons poorly understood. An important aspect in generating high-affinity IgG antibodies is chemokine receptor-mediated migration of B cells into appropriate niches, such as germinal centers. Here, we show that compared to IgG1 B cells, circulating IgG4 B cells express lower levels of CXCR3, CXCR4, CXCR5, CCR6, and CCR7, chemokine receptors involved in GC reactions and generation of long-lived plasma cells. This phenotype was recapitulated by in vitro priming of naive B cells with an IgG4-inducing combination of TFH /TH2 cytokines. Consistent with these observations, we found a low abundance of IgG4 B cells in secondary lymphoid tissues in vivo, and the IgG4 antibody response is substantially more short-lived compared to other IgG subclasses in patient groups undergoing CD20+ B cell depletion therapy with rituximab. These results prompt the hypothesis that factors needed to form IgG4 B cells restrain at the same time the induction of a robust migratory phenotype that could support a long-lived IgG4 antibody response.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina G/sangre , Receptores de Quimiocina/fisiología , Animales , Plasticidad de la Célula , Colitis Ulcerosa/inmunología , Humanos , Inmunoglobulina G/clasificación , Interleucina-4/farmacología , Ratones , Células 3T3 NIH
17.
Haematologica ; 106(9): 2478-2488, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32855277

RESUMEN

Vaso-occlusive crises are the hallmark of sickle cell disease (SCD). They are believed to occur in two steps, starting with adhesion of deformable low-dense red blood cells (RBCs), or other blood cells such as neutrophils, to the wall of post-capillary venules, followed by trapping of the denser RBCs or leukocytes in the areas of adhesion because of reduced effective lumen-diameter. In SCD, RBCs are heterogeneous in terms of density, shape, deformability and surface proteins, which accounts for the differences observed in their adhesion and resistance to shear stress. Sickle RBCs exhibit abnormal adhesion to laminin mediated by Lu/BCAM protein at their surface. This adhesion is triggered by Lu/BCAM phosphorylation in reticulocytes but such phosphorylation does not occur in mature dense RBCs despite firm adhesion to laminin. In this study, we investigated the adhesive properties of sickle RBC subpopulations and addressed the molecular mechanism responsible for the increased adhesion of dense RBCs to laminin in the absence of Lu/BCAM phosphorylation. We provide evidence for the implication of oxidative stress in post-translational modifications of Lu/BCAM that impact its distribution and cis-interaction with glycophorin C at the cell surface activating its adhesive function in sickle dense RBCs.


Asunto(s)
Anemia de Células Falciformes , Laminina , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Eritrocitos/metabolismo , Humanos , Laminina/metabolismo , Sistema del Grupo Sanguíneo Lutheran/metabolismo , Estrés Oxidativo
18.
Transfusion ; 60(2): 294-302, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31804732

RESUMEN

BACKGROUND: Red blood cell (RBC) transfusion is associated with adverse effects, which may involve activation of the host immune response. The effect of RBC transfusion on neutrophil Reactive Oxygen Species (ROS) production and adhesion ex vivo was investigated in endotoxemic volunteers and in critically ill patients that received a RBC transfusion. We hypothesized that RBC transfusion would cause neutrophil activation, the extent of which depends on the storage time and the inflammatory status of the recipient. STUDY DESIGN AND METHODS: Volunteers were injected with lipopolysaccharide (LPS) and transfused with either saline, fresh, or stored autologous RBCs. In addition, 47 critically ill patients with and without sepsis receiving either fresh (<8 days) or standard stored RBC (2-35 days) were included. Neutrophils from healthy volunteers were incubated with the plasma samples from the endotoxemic volunteers and from the critically ill patients, after which priming of neutrophil ROS production and adhesion were assessed. RESULTS: In the endotoxemia model, ex vivo neutrophil adhesion, but not ROS production, was increased after transfusion, which was not affected by RBC storage duration. In the critically ill, ex vivo neutrophil ROS production was already increased prior to transfusion and was not increased following transfusion. Neutrophil adhesion was increased following transfusion, which was more notable in the septic patients than in non-septic patients. Transfusion of fresh RBCs, but not standard issued RBCs, resulted in enhanced ROS production in neutrophils. CONCLUSION: RBC transfusion was associated with increased neutrophil adhesion in a model of human endotoxemia as well as in critically ill patients with sepsis.


Asunto(s)
Endotoxemia/metabolismo , Transfusión de Eritrocitos/efectos adversos , Neutrófilos/citología , Sepsis/terapia , Adolescente , Adulto , Adhesión Celular/fisiología , Células Cultivadas , Enfermedad Crítica , Voluntarios Sanos , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Sepsis/metabolismo , Adulto Joven
19.
Vox Sang ; 115(8): 664-675, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32378239

RESUMEN

BACKGROUND AND OBJECTIVES: Colloid osmotic pressure (COP) is a principal determinant of intravascular fluid homeostasis and a pillar of fluid therapy and transfusion. Transfusion-associated circulatory overload (TACO) is a leading complication of transfusion, and COP could be responsible for recruiting additional fluid. Study objective was to measure COP of blood products as well as investigate the effects of product concentration and storage lesion on COP. MATERIALS AND METHODS: Three units of each product were sampled longitudinally. COP was measured directly as well as the determinants thereof albumin and total protein. Conventional blood products, that is red blood cell (RBC), fresh-frozen plasma (FFP) and platelet concentrates (PLTs), were compared with their concentrated counterparts: volume-reduced RBCs, hyperconcentrated PLTs, and fully and partially reconstituted lyophilized plasma (prLP). Fresh and maximally stored products were measured to determine changes in protein and COP. We calculated potential volume load (PVL) to estimate volume recruited using albumin's water binding per product. RESULTS: Colloid osmotic pressure varies widely between conventional products (RBCs, 1·9; PLTs, 7·5; and FFP, 20·1 mmHg); however, all are hypooncotic compared with human plasma COP (25·4 mmHg). Storage lesion did not increase COP. Concentrating RBCs and PLTs did not increase COP; only prLP showed a supraphysiological COP of 47·3 mm Hg. The PVL of concentrated products was lower than conventional products. CONCLUSION: Colloid osmotic pressure of conventional products was low. Therefore, third-space fluid recruitment is an unlikely mechanism in TACO. Concentrated products had a lower calculated fluid load and may prevent TACO. Finally, storage did not significantly increase oncotic pressure of blood products.


Asunto(s)
Seguridad de la Sangre , Transfusión Sanguínea , Coloides/química , Albúminas , Plaquetas , Eritrocitos , Humanos , Presión Osmótica , Plasma
20.
Transfus Med Hemother ; 47(1): 61-67, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110195

RESUMEN

BACKGROUND: Anemia of inflammation (AI) is the most common cause of anemia in the critically ill, but its diagnosis is a challenge. New therapies specific to AI are in development, and they require accurate detection of AI. This study explores the potential of parameters of iron metabolism for the diagnosis of AI during an ICU stay. METHODS: In a nested case-control study, 30 patients developing AI were matched to 60 controls. The iron parameters were determined in plasma samples during an ICU stay. Receiver operating characteristic curves were used to determine the iron parameter threshold with the highest sensitivity and specificity to predict AI. Likelihood ratios as well as positive and negative predictive values were calculated as well. RESULTS: The sensitivity of iron parameters for diagnosing AI ranges between 62 and 76%, and the specificity between 57 and 72%. Iron and transferrin show the greatest area under the curve. Iron shows the highest sensitivity, and transferrin and transferrin saturation display the highest specificity. Hepcidin and ferritin show the lowest specificity. At an actual anemia prevalence of 53%, the diagnostic accuracy of iron, transferrin, and transferrin saturation was fair, with a positive predictive value between 71 and 73%. Combining iron, transferrin, transferrin saturation, hepcidin, and/or ferritin levels did not increase the accuracy of the AI diagnosis. CONCLUSIONS: In this explorative study on the use of different parameters of iron metabolism for diagnosing AI during an ICU stay, low levels of commonly measured markers such as plasma iron, transferrin, and transferrin saturation have the highest sensitivity and specificity and outperform ferritin and hepcidin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA