Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(38): 19116-19125, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31427514

RESUMEN

Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genomics and metagenomics to retrieve draft genomes of 3 marine Candidatus Electrothrix and 1 freshwater Ca. Electronema species. These genomes contain >50% unknown genes but still share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few core genes lost and 212 unique genes (from 197 gene families) conserved among cable bacteria. Last common ancestor analysis indicates gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomics of a Ca. Electronema enrichment, the genomes suggest that cable bacteria oxidize sulfide by reversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, yet-unidentified conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, whereas cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Deltaproteobacteria/genética , Deltaproteobacteria/fisiología , Genoma Bacteriano , Proteoma/análisis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Ciclo del Carbono , Movimiento Celular , Quimiotaxis , Citocromos/metabolismo , Deltaproteobacteria/clasificación , Transporte de Electrón , Sedimentos Geológicos/microbiología , Nitratos/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , Homología de Secuencia , Sulfuros/metabolismo
2.
J Environ Manage ; 270: 110818, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32507739

RESUMEN

Conventional wastewater treatment plants remove phosphorus, which is captured in sewage sludge. Increasing attention is paid to suitable process pathways that allow recovery and recycling of phosphorus. One of the processes under investigation is acid leaching and recovery of phosphorus, but this requires considerable chemical additives, which could be avoided by stimulating acidification via microbiological processes. This study investigated phosphorus leaching from sewage sludge by biogenic sulfuric acid, using Acidithiobacillus thiooxidans. Sulfur supplementation and solid to liquid ratio were varied to examine how these factors affected phosphorus leaching yield. Chemical leaching by sulfuric acid from sewage sludge and thermally-treated sludge was conducted to compare with bioleaching from sewage sludge. Sewage sludge samples were collected from wastewater treatment plants in Ghent, Belgium, and Delft, The Netherlands. Both bioleaching and chemical leaching were conducted at laboratory scale using shake flask technique, and highest phosphorus leaching yield and time was determined using one-way ANOVA statistical tests. Biogenic sulfuric acid produced by A. thiooxidans extracted phosphorus from both sludge samples. The highest phosphorus leaching yield observed was 48 ± 0% for 17 days from Ghent samples and 57 ± 4% for 27 days from Delft samples with 5.0% (w/v) sulfur supplementation and 1.0% (w/v) solid to liquid ratio. Chemical leaching took shorter than bioleaching, but the leaching yield was lower, i.e. 41 ± 1% for 4 h from Ghent samples, 44 ± 1% for 1 h from Delft samples, 48 ± 1% for 1 h from thermally-treated Ghent samples and 51 ± 2% for 4 h from thermally-treated Delft samples. During phosphorus bioleaching, pH increase was observed during the early stage which hampered the activity of A. thiooxidans and therefore increased phosphorus leaching time. This study suggests that creating conditions for A. thiooxidans to overcome acid neutralizing capacity of sewage sludge is needed to extract phosphorus effectively.


Asunto(s)
Acidithiobacillus , Metales Pesados , Acidithiobacillus thiooxidans , Bélgica , Concentración de Iones de Hidrógeno , Países Bajos , Fósforo , Aguas del Alcantarillado , Aguas Residuales
3.
J Environ Manage ; 250: 109516, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31513998

RESUMEN

A better understanding of the effects of different urban and recreational surfaces on the die-off of water-borne pathogens that can cause infections after urban floods if released from surcharged combined sewers and other sources of fecal contamination is needed. The die-off of fecal indicator Escherichia coli was studied under controlled exposure to simulated sunlight on a range of different surfaces found in urban environments: gravel, sand, asphalt, pavement blocks, concrete, playground rubber tiles and grass, using glass as control. The surfaces were inoculated with artificial flooding water containing 105 colony forming units (CFU) of E. coli per mL and sampled periodically using the sterile cotton swab technique, after lowering the water level. The results show that dark inactivation was not statistically significant for any surface, suggesting that chemical composition and pH (varying between 6.5 ±â€¯0.8 and 9.2 ±â€¯0.4) did not affect the die-off rates. The highest light-induced die-off rates for E. coli after the floodwater recession, observed on rubber (>3.46 h-1) and asphalt (2.7 h-1), were attributed to temperature stress and loss of surface moisture.


Asunto(s)
Escherichia coli , Inundaciones , Heces , Agua Dulce , Microbiología del Agua
4.
Int J Environ Health Res ; 26(5-6): 536-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27666295

RESUMEN

Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.


Asunto(s)
Desinfectantes/farmacología , Desinfección/normas , Cuartos de Baño , Rayos Ultravioleta , Escherichia coli/efectos de la radiación , Filipinas
5.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22568606

RESUMEN

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Genoma Bacteriano , Metagenoma , Ciclo del Nitrógeno , Planctomycetales/genética , Planctomycetales/metabolismo , Organismos Acuáticos/clasificación , Nitrito Reductasas/metabolismo , Océanos y Mares , Oxidación-Reducción , Planctomycetales/clasificación , Compuestos de Amonio Cuaternario/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Agua
6.
Bioresour Technol ; 367: 128298, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368484

RESUMEN

The bioconversion of food waste to renewable products has an important role in alleviating the environmental burden of food wastage. This study evaluates the effect of solids retention time (1.5, 4, and 7 days) and lipid content (up to 30 % DS) on the solid's destruction efficiency and VFA yield from food waste fermentation. Although SRT below 4 days and lipid content beyond 20 % reduced the solids destruction efficiency (SRT -12 %, lipids -13 %), the VFA yield improved (SRT 0.36 to 0.48 g CODVFA/TCODFED; lipids 0.17 to 0.39 g CODVFA/TCODFED). This appeared to be a mechanism of improved acidification which doubled to 0.77 gCODVFA/g SCOD at 1.5-day SRT. The introduction of easily degradable organics in waste oils and methanogen inhibition by LCFAs were likely causes of process instability when lipids >20 %. Further research is needed considering the COD fractionation of the feed to maximize recoverable products on a commercial scale.


Asunto(s)
Alimentos , Eliminación de Residuos , Aguas del Alcantarillado , Reactores Biológicos , Ácidos Grasos Volátiles , Anaerobiosis
7.
Nature ; 440(7085): 790-4, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16598256

RESUMEN

Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Evolución Biológica , Genoma Bacteriano , Compuestos de Amonio Cuaternario/metabolismo , Anaerobiosis , Bacterias/clasificación , Reactores Biológicos , Evolución Molecular , Ácidos Grasos/biosíntesis , Genes Bacterianos/genética , Hidrazinas/metabolismo , Hidrolasas/metabolismo , Operón/genética , Oxidorreductasas/metabolismo , Filogenia , Termodinámica
8.
Proc Natl Acad Sci U S A ; 106(12): 4752-7, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19255441

RESUMEN

The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineralization in these waters. Without detectable denitrification, it is unclear how NH(4)(+) is remineralized from organic matter and sustains anammox or how secondary NO(2)(-) maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO(2)(-) from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimilatory nitrate reduction to ammonium was detected in an open-ocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH(4)(+) requirement for anammox. The remaining NH(4)(+) came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO(3)(-) accounted for only approximately 50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.


Asunto(s)
Nitrógeno/metabolismo , Oxígeno/metabolismo , Bacterias/genética , Regulación Bacteriana de la Expresión Génica , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Perú , Compuestos de Amonio Cuaternario/metabolismo
9.
Water Res ; 195: 116992, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714012

RESUMEN

The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aerobiosis , Reactores Biológicos , Escherichia coli , Eliminación de Residuos Líquidos
10.
Appl Environ Microbiol ; 76(5): 1596-603, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20048066

RESUMEN

Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed "ladderane lipids." In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C(20) [5]-ladderane fatty acids compared with the amount of C(18) [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C(18) [5]-ladderane fatty acids compared with the amount of C(20) [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R(2) = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C(18) and C(20) [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C(18) [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12 degrees C and 20 degrees C. Novel shorter (C(16)) and longer (C(22) to C(24)) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.


Asunto(s)
Bacterias Anaerobias/metabolismo , Bacterias Anaerobias/efectos de la radiación , Metabolismo de los Lípidos , Temperatura , Amoníaco/metabolismo , Oxidación-Reducción
11.
Artículo en Inglés | MEDLINE | ID: mdl-32218157

RESUMEN

Accurate assessments of drinking water quality, household hygenic practices, and the mindset of the consumers are critical for developing effective water intervention strategies. This paper presents a microbial quality assessment of 512 samples from household water storage containers and 167 samples from points of collection (POC) in remote rural communities in the hilly area of western Nepal. We found that 81% of the stored drinking water samples (mean log10 of all samples = 1.16 colony-forming units (CFU)/100 mL, standard deviation (SD) = 0.84) and 68% of the POC samples (mean log10 of all samples = 0.57 CFU/100 mL, SD = 0.86) had detectable E. coli. The quality of stored water was significantly correlated with the quality at the POC, with the majority (63%) of paired samples showing a deterioration in quality post-collection. Locally applied household water treatment (HWT) methods did not effectively improve microbial water quality. Among all household sanitary inspection questions, only the presence of livestock near the water storage container was significantly correlated with its microbial contamination. Households' perceptions of their drinking water quality were mostly influenced by the water's visual appearance, and these perceptions in general motivated their use of HWT. Improving water quality within the distribution network and promoting safer water handling practices are proposed to reduce the health risk due to consumption of contaminated water in this setting.


Asunto(s)
Agua Potable , Purificación del Agua , Calidad del Agua , Escherichia coli , Humanos , Nepal , Población Rural , Microbiología del Agua , Abastecimiento de Agua
12.
Sci Total Environ ; 704: 135456, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31837866

RESUMEN

The high frequency and intensity of urban floods caused by climate change, urbanisation and infrastructure failures increase public health risks when the flood water contaminated from combined sewer overflows (CSOs) or other sources of faecal contamination remains on urban surfaces. This study contributes to a better understanding of the effects of urban and recreational surfaces on the occurrence of waterborne pathogens. The inactivation of selected indicator organisms was studied under controlled exposure to artificial sunlight for 6 h followed by 18 h in dark conditions. Concrete, asphalt, pavement blocks and glass as control were inoculated with artificial floodwater containing, as indicator organisms, Escherichia coli bacteria, which are common faecal indicator bacteria (FIB) for water quality assessment, Bacillus subtilis spores chosen as surrogates for Cryptosporidium parvum oocysts and Giardia cysts, and bacteriophages MS2 as indicators for viral contamination. On practically all the surfaces in this study, E. coli had the highest inactivation under light conditions followed by MS2 and B. subtilis, except asphalt where MS2 was inactivated faster. The highest inactivation under light conditions was seen with E. coli on a concrete surface (pH 9.6) with an inactivation rate of 1.85 h-1. However, the pH of the surfaces (varying between 7.0 and 9.6) did not have any influence on inactivation rates under dark conditions. MS2 bacteriophage had the highest inactivation under light conditions on asphalt with a rate of 1.29 h-1. No die-off of B. subtilis spores was observed on any of the surfaces during the experiment, neither in light nor in dark conditions. This study underpins the need to use different indicator organisms to test their inactivation after flooding. It also suggests that given the sunlight conditions, concentration of indicator organisms and type of surface, the fate of waterborne pathogens after a flood could be estimated.


Asunto(s)
Monitoreo del Ambiente/métodos , Inundaciones , Microbiología del Agua , Bacterias , Ciudades , Criptosporidiosis , Cryptosporidium , Cryptosporidium parvum , Levivirus , Oocistos
13.
Environ Microbiol ; 10(11): 3120-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18462401

RESUMEN

Microbiological investigation of anaerobic ammonium oxidizing (anammox) bacteria has until now been restricted to wastewater species. The present study describes the enrichment and characterization of two marine Scalindua species, the anammox genus that dominates almost all natural habitats investigated so far. The species were enriched from a marine sediment in the Gullmar Fjord (Sweden) using a medium based on Red Sea salt. Anammox cells comprised about 90% of the enrichment culture after 10 months. The enriched Scalindua bacteria displayed all typical features known for anammox bacteria, including turnover of hydrazine, the presence of ladderane lipids, and a compartmentalized cellular ultrastructure. The Scalindua species also showed a nitrate-dependent use of formate, acetate and propionate, and performed a formate-dependent reduction of nitrate, Fe(III) and Mn(IV). This versatile metabolism may be the basis for the global distribution and substantial contribution of the marine Scalindua anammox bacteria to the nitrogen loss from oxygen-limited marine ecosystems.


Asunto(s)
Bacterias Anaerobias/aislamiento & purificación , Bacterias Anaerobias/metabolismo , Nitrógeno/metabolismo , Agua de Mar/microbiología , Ácido Acético/metabolismo , Bacterias Anaerobias/genética , Bacterias Anaerobias/ultraestructura , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Formiatos/metabolismo , Genes de ARNr , Hidrazinas/metabolismo , Hierro/metabolismo , Lípidos/análisis , Manganeso/metabolismo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxidación-Reducción , Filogenia , Propionatos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Suecia
14.
FEMS Microbiol Ecol ; 63(1): 46-55, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18081590

RESUMEN

Anaerobic ammonium oxidizing (anammox) bacteria are detected in many natural ecosystems and wastewater treatment plants worldwide. This study describes the enrichment of anammox bacteria in the presence of acetate. The results obtained extend the concept that the anammox bacteria can be enriched to high densities in the presence of substrates for heterotrophic growth. Batch experiments showed that among the tested biomass, the biomass from the Candidatus 'Brocadia fulgida' enrichment culture oxidizes acetate at the highest rate. Continuous cultivation experiments showed that in the presence of acetate, ammonium, nitrite and nitrate, Candidatus 'Brocadia fulgida' out-competed other anammox bacteria. The results indicated that Candidatus 'Brocadia fulgida' did not incorporate acetate directly into their biomass. Candidatus 'Brocadia fulgida' exhibited the common characteristics of anammox bacteria: the presence of an anammoxosome and ladderane lipids and the production of hydrazine in the presence of hydroxylamine. Interestingly, the biofilm aggregates of this species showed strong autofluorescence. It is the only known anammox species exhibiting this feature. The autofluorescent extracellular polymeric substance had two excitation (352 and 442 nm) and two emission (464 and 521 nm) maxima.


Asunto(s)
Bacterias Anaerobias/clasificación , Biopelículas/crecimiento & desarrollo , Fluorescencia , Compuestos de Amonio Cuaternario/metabolismo , Acetatos/metabolismo , Bacterias Anaerobias/genética , Bacterias Anaerobias/crecimiento & desarrollo , Bacterias Anaerobias/fisiología , Biomasa , Crecimiento Quimioautotrófico , Hidrazinas/metabolismo , Lípidos/biosíntesis , Lípidos/química , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Polímeros , ARN Ribosómico 16S , Análisis de Secuencia de ADN
15.
Syst Appl Microbiol ; 31(2): 114-25, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18289820

RESUMEN

Oxidation of high-strength ammonium wastewater can lead to exceptionally high nitrite concentrations; therefore, the effect of high nitrite concentration (> 400 mM) was studied using an ammonium-oxidizing enrichment culture in a batch reactor. Ammonium was fed to the reactor in portions of 40-150 mM until ammonium oxidation rates decreased and finally stopped. Activity was restored by replacing half of the medium, while biomass was retained by a membrane. The ammonium-oxidizing population obtained was able to oxidize ammonium at nitrite concentrations of up to 500 mM. The maximum specific oxidation activity of the culture in batch test was about 0.040 mmol O(2)g(-1)proteinmin(-1) and the K(s) value was 1.5 mM ammonium. In these tests, half of the maximum oxidation activity was still present at a concentration of 600 mM nitrite and approximately 10% residual activity could still be measured at 1200 mM nitrite (pH 7.4), or as a free nitrous acid (FNA) concentration of 6.6 mg l(-1). Additional experiments showed that the inhibition was caused by nitrite and not by the high sodium chloride concentration of the medium. The added ammonium was mainly converted into nitrite and no nitrite oxidation was observed. In addition, gaseous nitrogen compounds were detected and mass balance calculations revealed a nitrogen loss of approximately 20% using this system. Phylogenetic analyses of 16S rRNA and ammonium monooxygenase (amoA) genes of the obtained enrichment culture showed that ammonium-oxidizing bacteria of the Nitrosomonas europaea/Nitrosococcus mobilis cluster dominated the two clone libraries. Approximately 25% of the 16S rRNA clones showed a similarity of 92% to Deinococcus-like organisms. Specific fluorescence in situ hybridization (FISH) probes confirmed that these microbes comprised 10-20% of the microbial community in the enrichment. The Deinococcus-like organisms were located around the Nitrosomonas clusters, but their role in the community is currently unresolved.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/clasificación , Nitritos/metabolismo , Nitritos/farmacología , Compuestos de Amonio Cuaternario/metabolismo , Microbiología del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomasa , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Oxidación-Reducción , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
16.
Sci Total Environ ; 634: 868-874, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29653430

RESUMEN

Removal of nitrogen from wastewater without using electricity consuming aerators was previously observed in photo-bioreactors with a mixed algal-bacterial biomass. Algammox is the particular process based on algae, ammonium oxidizing organisms and anammox bacteria. In this research the activity of anammox bacteria in such an oxygen-producing environment was tested, as well as the effect of short-duration increase in dissolved oxygen (DO) to values potentially inhibiting anammox activity. Sequencing batch photo-bioreactors were fed with settled domestic wastewater enriched with ammonium (200mgNH4+-N/L) and exposed to light within the photosynthetic active range with intensity of about 500µmol/m2·s. Each cycle consisted of 12h illumination and 12h darkness. A well-settling biomass (10days solids retention time) developed that carried out nitritation, nitrification and anammox. Ammonium removal rate during the light period was 4.5mgN-NH4+/L·h, equal to 858mgN-NH4+/m2·h or 477mgN-NH4+/(mol photons). When the reactors were aerated for 3h to temporarily increase the DO, anammox was inhibited at bulk DO values larger than 0.4-1.0mg/L. For almost oxygen saturated conditions, recovery time was about 9days. Algammox photo-bioreactors are therefore able to overcome short periods of oxygen stress, provided they occur only occasionally.

17.
Artículo en Inglés | MEDLINE | ID: mdl-29649111

RESUMEN

To assess the suitability of water sources for drinking purposes, samples were taken from groundwater sources (boreholes and hand-dug wells) used for drinking water in the Dodowa area of Ghana. The samples were analyzed for the presence of fecal indicator bacteria (Escherichia coli) and viruses (Adenovirus and Rotavirus), using membrane filtration with plating and glass wool filtration with quantitative polymerase chain reaction (PCR), respectively. In addition, sanitary inspection of surroundings of the sources was conducted to identify their vulnerability to pollution. The presence of viruses was also assessed in water samples from the Dodowa River. More than 70% of the hand-dug wells were sited within 10 m of nearby sources of contamination. All sources contained E. coli bacteria, and their numbers in samples of water between dug wells and boreholes showed no significant difference (p = 0.48). Quantitative PCR results for Adenovirus indicated 27% and 55% were positive for the boreholes and hand-dug wells, respectively. Samples from all boreholes tested negative for the presence of Rotavirus while 27% of the dug wells were positive for Rotavirus. PCR tests of 20% of groundwater samples were inhibited. Based on these results we concluded that there is systemic microbial and fecal contamination of groundwater in the area. On-site sanitation facilities, e.g., pit latrines and unlined wastewater drains, are likely the most common sources of fecal contamination of groundwater in the area. Water abstracted from groundwater sources needs to be treated before use for consumption purposes. In addition, efforts should be made to delineate protected areas around groundwater abstraction points to minimize contamination from point sources of pollution.


Asunto(s)
Agua Subterránea/microbiología , Pozos de Agua , Adenoviridae/aislamiento & purificación , Monitoreo del Ambiente , Escherichia coli/aislamiento & purificación , Heces/microbiología , Ghana , Humanos , Ríos , Rotavirus/aislamiento & purificación , Abastecimiento de Agua
18.
Syst Appl Microbiol ; 30(1): 39-49, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16644170

RESUMEN

The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".


Asunto(s)
Bacterias Anaerobias/clasificación , Bacterias Anaerobias/metabolismo , Propionatos/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias Anaerobias/fisiología , Bacterias Anaerobias/ultraestructura , Reactores Biológicos , Medios de Cultivo , ADN Ribosómico/genética , Ecosistema , Hibridación Fluorescente in Situ , Lípidos/análisis , Viabilidad Microbiana , Datos de Secuencia Molecular , Oxidación-Reducción , ARN Ribosómico 16S/genética
19.
FEMS Microbiol Lett ; 258(2): 297-304, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16640588

RESUMEN

Anammox bacteria present in wastewater treatment systems and marine environments are capable of anaerobically oxidizing ammonium to dinitrogen gas. This anammox metabolism takes place in the anammoxosome which membrane is composed of lipids with peculiar staircase-like 'ladderane' hydrocarbon chains that comprise three or four linearly concatenated cyclobutane structures. Here, we applied high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to elucidate the full identity of these ladderane lipids. This revealed a wide variety of ladderane lipid species with either a phosphocholine or phosphoethanolamine polar headgroup attached to the glycerol backbone. In addition, in silico analysis of genome data gained insight into the machinery for the biosynthesis of the phosphocholine and phosphoethanolamine phospholipids in anammox bacteria.


Asunto(s)
Bacterias/metabolismo , Etanolaminas/química , Fosfolípidos/química , Fosforilcolina/química , Bacterias/genética , Bacterias/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Biología Computacional , Genoma Bacteriano , Espectrometría de Masas , Países Bajos , Fosfolípidos/biosíntesis , Fosfolípidos/clasificación , Microbiología del Agua
20.
Waste Manag ; 57: 149-157, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26704063

RESUMEN

An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants.


Asunto(s)
Biotecnología/métodos , Cobre/aislamiento & purificación , Residuos Electrónicos , Oro/aislamiento & purificación , Reciclaje/métodos , Acidithiobacillus/metabolismo , Acidithiobacillus thiooxidans , Cianuros/metabolismo , Glicina/metabolismo , Microscopía Electrónica de Rastreo , Pseudomonas fluorescens , Pseudomonas putida/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA