Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276040

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Asunto(s)
Poliuretanos , Sincrotrones , Difusión , Geles , Suelo/química
2.
New Phytol ; 229(3): 1268-1277, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929739

RESUMEN

Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response. Many studies have indicated that the mechanisms seen in vitro do not translate into improved crop P nutrition in complex soil-plant systems. Furthermore, associated mechanisms are often not rigorously assessed. We suggest that PSM do not mobilise sufficient P to change the crops' nutritional environment under field conditions. The current concept, in which PSM solubilise P 'for the plant' should thus be revised. Although PSM have the capacity to solubilise P to meet their own needs, it is the turnover of the microbial biomass that subsequently provides P to plants over a longer time. Therefore, the existing concept of PSM function is unlikely to deliver a reliable strategy for increasing crop P nutrition. A further mechanistic understanding is needed to determine how P mobilisation by PSM as a component of the whole soil community can be manipulated to become more effective for plant P nutrition.


Asunto(s)
Fosfatos , Suelo , Agricultura , Productos Agrícolas , Fósforo , Microbiología del Suelo
3.
J Exp Bot ; 71(19): 5752-5763, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32667996

RESUMEN

Root architecture is a promising breeding target for developing resource-efficient crops. Breeders and plant physiologists have called for root ideotypes that have narrow, deep root systems for improved water and nitrate capture, or wide, shallower root systems for better uptake of less mobile topsoil nutrients such as phosphorus. Yet evidence of relationships between root architecture and crop yield is limited. Many studies focus on the response to a single constraint, despite the fact that crops are frequently exposed to multiple soil constraints. For example, in dryland soils under no-till management, topsoil nutrient stratification is an emergent profile characteristic, leading to spatial separation of water and nutrients as the soil profile dries. This results in spatio-temporal trade-offs between efficient resource capture and pre-defined root ideotypes developed to counter a single constraint. We believe there is need to identify and better understand trade-offs involved in the efficient capture of multiple, spatially disjunct soil resources. Additionally, how these trade-offs interact with genotype (root architecture), environment (soil constraints), and management (agronomy) are critical unknowns. We argue that identifying root traits that enable efficient capture of multiple soil resources under fluctuating environmental constraints is a key step towards meeting the challenges of global food security.


Asunto(s)
Nitrógeno , Raíces de Plantas , Fósforo , Fitomejoramiento , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA