RESUMEN
OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.
Asunto(s)
Polvo/análisis , Exposición a Riesgos Ambientales , Granjas , Visón/virología , Exposición Profesional , ARN Viral/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Animales , Humanos , Países Bajos/epidemiologíaRESUMEN
A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.
Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Epidemias , Serogrupo , Animales , Lengua Azul/epidemiología , Lengua Azul/transmisión , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , Países Bajos/epidemiología , Ovinos , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisiónRESUMEN
Infections with Schmallenberg virus (SBV) are associated with congenital malformations in ruminants. Because reporting of suspected cases only could underestimate the true rate of infection, we conducted a seroprevalence study in the Netherlands to detect past exposure to SBV among dairy cattle. A total of 1,123 serum samples collected from cattle during November 2011-January 2012 were tested for antibodies against SBV by using a virus neutralization test; seroprevalence was 72.5%. Seroprevalence was significantly higher in the central-eastern part of the Netherlands than in the northern and southern regions (p<0.001). In addition, high (70%-100%) within-herd seroprevalence was observed in 2 SBV-infected dairy herds and 2 SBV-infected sheep herds. No significant differences were found in age-specific prevalence of antibodies against SBV, which is an indication that SBV is newly arrived in the country.
Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Bunyaviridae/veterinaria , Enfermedades de los Bovinos/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Orthobunyavirus/inmunología , Animales , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Industria Lechera , Países Bajos/epidemiología , Estaciones del Año , Estudios SeroepidemiológicosRESUMEN
SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.
Asunto(s)
COVID-19 , Granjas , Visón , SARS-CoV-2 , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Femenino , Masculino , Visón/virología , Países Bajos/epidemiología , Factores de Riesgo , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.
Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Animales Salvajes , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades de los Gatos/epidemiología , Gatos , Enfermedades de los Perros/epidemiología , Perros , Granjas , Humanos , Visón , SARS-CoV-2RESUMEN
Q fever is a zoonosis caused by the bacterium Coxiella burnetii. One of the largest reported outbreaks of Q fever in humans occurred in the Netherlands starting in 2007; epidemiologic investigations identified small ruminants as the source. To determine the genetic background of C. burnetii in domestic ruminants responsible for the human Q fever outbreak, we genotyped 126 C. burnetii-positive samples from ruminants by using a 10-loci multilocus variable-number tandem-repeat analyses panel and compared them with internationally known genotypes. One unique genotype predominated in dairy goat herds and 1 sheep herd in the human Q fever outbreak area in the south of the Netherlands. On the basis of 4 loci, this genotype is similar to a human genotype from the Netherlands. This finding strengthens the probability that this genotype of C. burnetii is responsible for the human Q fever epidemic in the Netherlands.
Asunto(s)
Coxiella burnetii/fisiología , Brotes de Enfermedades , Enfermedades de las Cabras/epidemiología , Epidemiología Molecular , Fiebre Q/veterinaria , Rumiantes/microbiología , Enfermedades de las Ovejas/epidemiología , Animales , Técnicas de Tipificación Bacteriana , Coxiella burnetii/genética , Genotipo , Cabras , Humanos , Tipificación de Secuencias Multilocus , Países Bajos/epidemiología , Filogenia , Fiebre Q/epidemiología , OvinosRESUMEN
In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.
Asunto(s)
Pollos , Brotes de Enfermedades/veterinaria , Patos , Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Animales , Subtipo H5N8 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Gripe Aviar/virología , Países Bajos/epidemiología , Enfermedades de las Aves de Corral/virologíaRESUMEN
In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.
Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Evolución Molecular , Granjas , Visón/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Secuencia de Aminoácidos , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Teorema de Bayes , Brotes de Enfermedades , Humanos , Países Bajos/epidemiología , Filogenia , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de Proteína , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genéticaRESUMEN
Bluetongue viruses (BTVs) could invade N-W Europe similar to BTV serotype 8 (BTV8/net06), since the source and route of introduction of this virus has not been solved. Therefore, the Dutch survey for Bluetongue by PCR testing was extended by further analysis of PCR positives to identify the involved BTV. In late August 2008, BTV was reported with 12 nucleotide differences in the S10 amplicon (S10 genotyping). This virus was identified as serotype 6, here named BTV6/net08. Promptly, serotype specific real-time PCR tests were developed for serotypes 1, 6, and 8 (S2 genotyping). Agreement was found between results by S10- and S2 genotyping. Further, BTV1 was identified by both S10- and S2 genotyping in one imported animal. After initial discovery of BTV6 in the Netherlands, animals from 18 holdings tested PCR positive for BTV6/net08 in 2008. Remarkably only one or two PCR positive animals per holding were found. Serum neutralization tests did not result in the discovery of more BTV6 infected animals. Retrospective studies indicated no evidence for infections by BTV6/net08 prior to the first discovery. Experimental infections with BTV6/net08 did not cause clinical disease in sheep, calves and cattle, except for a very short fever in some animals. This clearly showed that the vaccine-related BTV6/net08 is not virulent. BTV6/net08 was not found by passive and active surveys in the years after its discovery. Apparently, BTV6/net08 was not efficiently transmitted by endemic species of Culicoides in N-W Europe, and disappeared without the need of any control measure.
Asunto(s)
Virus de la Lengua Azul/aislamiento & purificación , Lengua Azul/epidemiología , Lengua Azul/virología , Animales , Lengua Azul/transmisión , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/fisiología , Bovinos , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Europa (Continente)/epidemiología , Países Bajos/epidemiología , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , OvinosRESUMEN
A major epidemic of bluetongue virus serotype 8 (BTV-8) occurred in Western Europe in 2006. During 2007 it became evident that BTV-8 had survived the winter and a re-emerging epidemic quickly developed. The objective of this study was to describe the severity and clinical impact of the BTV-8 epidemic in 2007 in The Netherlands in laboratory-confirmed outbreaks and to compare this with the situation in 2006. The relative frequency of clinical signs in BTV-8 affected sheep flocks and cattle herds in 2007 and 2006 was similar. The most prominent changes were a higher proportion of sheep flocks with lameness and a much higher proportion of cattle herds reporting a decrease in milk yield in 2007. BTV-8 associated morbidity and mortality incidence rates in sheep flocks and cattle herds were significantly (P<0.001) higher in 2007 than in 2006. Both in sheep flocks and cattle herds, BTV-8 associated case fatality was significantly (P<0.001) lower in 2007, which was probably due to better medical treatment of sick animals. There were significantly (P<0.001) more fertility problems associated with BTV-8 infection in outbreak cattle herds in 2007 compared to 2006.