Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 187(5): 1038-1041, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428386

RESUMEN

Genomic approaches have the potential to play a pivotal role in conservation, both to detect threats to species and populations and to restore biodiversity through actions. We here separate these approaches into two subdisciplines, vulnerability and restoration genomics, and discuss current applications, outstanding questions, and future potential.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Genómica
2.
Cell ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38942016

RESUMEN

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.

3.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433011

RESUMEN

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Asunto(s)
Evolución Molecular , Genoma , Perisodáctilos/genética , Animales , Demografía , Flujo Génico , Variación Genética , Geografía , Heterocigoto , Homocigoto , Especificidad del Huésped , Cadenas de Markov , Mutación/genética , Filogenia , Especificidad de la Especie , Factores de Tiempo
4.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
5.
Plant J ; 117(3): 944-955, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37947292

RESUMEN

Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype-environment and genotype-phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.


Asunto(s)
Pinus sylvestris , Pinus , Humanos , Pinus sylvestris/genética , Polimorfismo de Nucleótido Simple/genética , Genotipo , Fitomejoramiento , Pinus/genética , ADN Intergénico
6.
Bioinformatics ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960861

RESUMEN

MOTIVATION: The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome, on mismatch rates across read lengths. RESULTS: For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from BAM-files and informing on reference bias, read-length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimised mapping parameters for each read length will be a key step in alleviating reference bias and spurious mappings. AVAILABILITY: AMBER is available for non-commercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts used to generate and analyze simulated data sets are available on Github (https://github.com/sdolenz/refbias_scripts). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Mol Ecol ; 33(2): e17205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971141

RESUMEN

Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.


Asunto(s)
Metagenómica , Resiliencia Psicológica , Humanos , Animales , Recién Nacido , Evolución Biológica , Genómica , Rumiantes/genética , Variación Genética/genética
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34848534

RESUMEN

Increasing habitat fragmentation leads to wild populations becoming small, isolated, and threatened by inbreeding depression. However, small populations may be able to purge recessive deleterious alleles as they become expressed in homozygotes, thus reducing inbreeding depression and increasing population viability. We used whole-genome sequences from 57 tigers to estimate individual inbreeding and mutation load in a small-isolated and two large-connected populations in India. As expected, the small-isolated population had substantially higher average genomic inbreeding (FROH = 0.57) than the large-connected (FROH = 0.35 and FROH = 0.46) populations. The small-isolated population had the lowest loss-of-function mutation load, likely due to purging of highly deleterious recessive mutations. The large populations had lower missense mutation loads than the small-isolated population, but were not identical, possibly due to different demographic histories. While the number of the loss-of-function alleles in the small-isolated population was lower, these alleles were at higher frequencies and homozygosity than in the large populations. Together, our data and analyses provide evidence of 1) high mutation load, 2) purging, and 3) the highest predicted inbreeding depression, despite purging, in the small-isolated population. Frequency distributions of damaging and neutral alleles uncover genomic evidence that purifying selection has removed part of the mutation load across Indian tiger populations. These results provide genomic evidence for purifying selection in both small and large populations, but also suggest that the remaining deleterious alleles may have inbreeding-associated fitness costs. We suggest that genetic rescue from sources selected based on genome-wide differentiation could offset any possible impacts of inbreeding depression.


Asunto(s)
Variación Genética , Genómica , Endogamia , Tigres/genética , Distribución Animal , Animales , Conservación de los Recursos Naturales , Genoma , India
9.
BMC Bioinformatics ; 23(1): 228, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698034

RESUMEN

BACKGROUND: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. RESULTS: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub ( https://github.com/NBISweden/GenErode ). CONCLUSIONS: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.


Asunto(s)
Biología Computacional , Genoma , Animales , Especies en Peligro de Extinción , Genómica , Reproducibilidad de los Resultados , Programas Informáticos
10.
BMC Genomics ; 23(1): 747, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357860

RESUMEN

BACKGROUND: Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.


Asunto(s)
Flujo Genético , Endogamia , Humanos , Selección Genética , Alelos , Genómica , Variación Genética
11.
Mol Biol Evol ; 37(10): 3003-3022, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32467975

RESUMEN

Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.


Asunto(s)
Cálculos Dentales/microbiología , Mamíferos/microbiología , Microbiota , Boca/microbiología , Animales , Evolución Biológica , Dieta , Farmacorresistencia Microbiana/genética , Gorilla gorilla , Metagenoma , Reno , Ursidae
12.
Mol Biol Evol ; 37(1): 183-194, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529046

RESUMEN

Genomic data can be a powerful tool for inferring ecology, behavior, and conservation needs of highly elusive species, particularly, when other sources of information are hard to come by. Here, we focus on the Dryas monkey (Cercopithecus dryas), an endangered primate endemic to the Congo Basin with cryptic behavior and possibly <250 remaining adult individuals. Using whole-genome sequencing data, we show that the Dryas monkey represents a sister lineage to the vervets (Chlorocebus sp.) and has diverged from them ∼1.4 Ma with additional bidirectional gene flow ∼750,000-∼500,000 years ago that has likely involved the crossing of the Congo River. Together with evidence of gene flow across the Congo River in bonobos and okapis, our results suggest that the fluvial topology of the Congo River might have been more dynamic than previously recognized. Despite the presence of several homozygous loss-of-function mutations in genes associated with sperm mobility and immunity, we find high genetic diversity and low levels of inbreeding and genetic load in the studied Dryas monkey individual. This suggests that the current population carries sufficient genetic variability for long-term survival and might be larger than currently recognized. We thus provide an example of how genomic data can directly improve our understanding of highly elusive species.


Asunto(s)
Evolución Biológica , Cercopithecus/genética , Especies en Peligro de Extinción , Animales , Introgresión Genética , Genoma , Masculino
13.
BMC Genomics ; 21(1): 844, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256612

RESUMEN

BACKGROUND: After over a decade of developments in field collection, laboratory methods and advances in high-throughput sequencing, contamination remains a key issue in ancient DNA research. Currently, human and microbial contaminant DNA still impose challenges on cost-effective sequencing and accurate interpretation of ancient DNA data. RESULTS: Here we investigate whether human contaminating DNA can be found in ancient faunal sequencing datasets. We identify variable levels of human contamination, which persists even after the sequence reads have been mapped to the faunal reference genomes. This contamination has the potential to affect a range of downstream analyses. CONCLUSIONS: We propose a fast and simple method, based on competitive mapping, which allows identifying and removing human contamination from ancient faunal DNA datasets with limited losses of true ancient data. This method could represent an important tool for the ancient DNA field.


Asunto(s)
Contaminación de ADN , Genoma , ADN Antiguo , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
14.
BMC Genomics ; 21(1): 854, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267779

RESUMEN

BACKGROUND: Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. RESULTS: We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. CONCLUSIONS: Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.


Asunto(s)
Ciervos , Variación Genética , Animales , ADN Mitocondrial/genética , Ciervos/genética , Demografía , Europa (Continente) , América del Norte , Filogenia , Análisis de Secuencia de ADN
15.
BMC Genet ; 21(1): 38, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228443

RESUMEN

BACKGROUND: While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns. RESULTS: We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values. CONCLUSION: Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.


Asunto(s)
Anuros/genética , Filogenia , Proteínas Citotóxicas Formadoras de Poros/genética , Piel/química , Alelos , Animales , Codón/genética , Frecuencia de los Genes/genética , Polimorfismo Genético , Proteínas Citotóxicas Formadoras de Poros/química
17.
Mol Ecol ; 28(2): 484-502, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30187987

RESUMEN

Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between many aspects of the host's biology, health and associated micro-organisms. Whereas amplicon sequencing has traditionally been used to characterize the microbiome, the increasing number of published population genomics data sets offers an underexploited opportunity to study microbial profiles from the host shotgun sequencing data. Here, we use sequence data originally generated from killer whale Orcinus orca skin biopsies for population genomics, to characterize the skin microbiome and investigate how host social and geographical factors influence the microbial community composition. Having identified 845 microbial taxa from 2.4 million reads that did not map to the killer whale reference genome, we found that both ecotypic and geographical factors influence community composition of killer whale skin microbiomes. Furthermore, we uncovered key taxa that drive the microbiome community composition and showed that they are embedded in unique networks, one of which is tentatively linked to diatom presence and poor skin condition. Community composition differed between Antarctic killer whales with and without diatom coverage, suggesting that the previously reported episodic migrations of Antarctic killer whales to warmer waters associated with skin turnover may control the effects of potentially pathogenic bacteria such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of microbiome studies from host shotgun sequencing data and highlights the importance of metagenomics in understanding the relationship between host and microbial ecology.


Asunto(s)
Metagenómica , Microbiota/genética , Piel/microbiología , Orca/microbiología , Animales , Regiones Antárticas , Diatomeas/genética , Geografía , Orca/parasitología
18.
Am J Phys Anthropol ; 165(3): 565-575, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29313894

RESUMEN

OBJECTIVES: The critically endangered Grauer's gorilla (Gorilla beringei graueri) has experienced an estimated 77% population decline within a single generation. Although crucial for informed conservation decisions, there is no clear understanding about population structure and distribution of genetic diversity across the species' highly fragmented range. We fill this gap by studying several core and peripheral Grauer's gorilla populations throughout their distribution range. MATERIALS AND METHODS: We generated genetic profiles for a sampling of an unstudied population of Grauer's gorillas from within the species' core range at 13 autosomal microsatellite loci and combined them with previously published and newly generated data from four other Grauer's gorilla populations, two mountain gorilla populations, and one western lowland gorilla population. RESULTS: In agreement with previous studies, the genetic diversity of Grauer's gorillas is intermediate, falling between western lowland and mountain gorillas. Among Grauer's gorilla populations, we observe lower genetic diversity and high differentiation in peripheral compared with central populations, indicating a strong effect of genetic drift and limited gene flow among small, isolated forest fragments. DISCUSSION: Although genetically less diverse, peripheral populations are frequently essential for the long-term persistence of a species and migration between peripheral and core populations may significantly enrich the overall species genetic diversity. Thus, in addition to central Grauer's gorilla populations from the core of the distribution range that clearly deserve conservation attention, we argue that conservation strategies aiming to ensure long-term species viability should include preserving peripheral populations and enhancing habitat connectivity.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Variación Genética/genética , Genética de Población/métodos , Gorilla gorilla/genética , Repeticiones de Microsatélite/genética , Animales , Antropología Física , Heces/química
19.
BMC Ecol Evol ; 24(1): 14, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273244

RESUMEN

Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.


Asunto(s)
Evolución Biológica , Gorilla gorilla , Animales , Gorilla gorilla/genética , Gorilla gorilla/anatomía & histología , Genoma/genética , Mutación , Genómica
20.
Environ Innov Soc Transit ; 48: 100736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37250374

RESUMEN

Against the backdrop of a failing vaccine innovation system, innovation policy aimed at creating a COVID-19 vaccine was surprisingly fast and effective. This paper analyzes the influence of the COVID-19 landscape shock and corresponding innovation policy responses on the existing vaccine innovation system. We use document analysis and expert interviews, performed during vaccine development. We find that the sharing of responsibility between public and private actors on various geographical levels, and the focus on accelerating changes in the innovation system were instrumental in achieving fast results. Simultaneously, the acceleration exacerbated existing societal innovation barriers, such as vaccine hesitancy, health inequity, and contested privatization of earnings. Going forward, these innovation barriers may limit the legitimacy of the vaccine innovation system and reduce pandemic preparedness. Next to a focus on acceleration, transformative innovation policies for achieving sustainable pandemic preparedness are still urgently needed. Implications for mission-oriented innovation policy are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA