Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830104

RESUMEN

Epidermolysis bullosa is a group of genetic skin conditions characterized by abnormal skin (and mucosal) fragility caused by pathogenic variants in various genes. The disease severity ranges from early childhood mortality in the most severe types to occasional acral blistering in the mildest types. The subtype and severity of EB is linked to the gene involved and the specific variants in that gene, which also determine its mode of inheritance. Current treatment is mainly focused on symptomatic relief such as wound care and blister prevention, because truly curative treatment options are still at the preclinical stage. Given the current level of understanding, the broad spectrum of genes and variants underlying EB makes it impossible to develop a single treatment strategy for all patients. It is likely that many different variant-specific treatment strategies will be needed to ultimately treat all patients. Antisense-oligonucleotide (ASO)-mediated exon skipping aims to counteract pathogenic sequence variants by restoring the open reading frame through the removal of the mutant exon from the pre-messenger RNA. This should lead to the restored production of the protein absent in the affected skin and, consequently, improvement of the phenotype. Several preclinical studies have demonstrated that exon skipping can restore protein production in vitro, in skin equivalents, and in skin grafts derived from EB-patient skin cells, indicating that ASO-mediated exon skipping could be a viable strategy as a topical or systemic treatment. The potential value of exon skipping for EB is supported by a study showing reduced phenotypic severity in patients who carry variants that result in natural exon skipping. In this article, we review the substantial progress made on exon skipping for EB in the past 15 years and highlight the opportunities and current challenges of this RNA-based therapy approach. In addition, we present a prioritization strategy for the development of exon skipping based on genomic information of all EB-involved genes.


Asunto(s)
Epidermólisis Ampollosa , Exones , Fibroblastos/inmunología , Mutación , Oligonucleótidos Antisentido , Piel/inmunología , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa/inmunología , Epidermólisis Ampollosa/terapia , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico
2.
Bioinformatics ; 35(6): 1076-1078, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30165396

RESUMEN

MOTIVATION: The volume and complexity of biological data increases rapidly. Many clinical professionals and biomedical researchers without a bioinformatics background are generating big '-omics' data, but do not always have the tools to manage, process or publicly share these data. RESULTS: Here we present MOLGENIS Research, an open-source web-application to collect, manage, analyze, visualize and share large and complex biomedical datasets, without the need for advanced bioinformatics skills. AVAILABILITY AND IMPLEMENTATION: MOLGENIS Research is freely available (open source software). It can be installed from source code (see http://github.com/molgenis), downloaded as a precompiled WAR file (for your own server), setup inside a Docker container (see http://molgenis.github.io), or requested as a Software-as-a-Service subscription. For a public demo instance and complete installation instructions see http://molgenis.org/research.


Asunto(s)
Biología Computacional , Programas Informáticos , Algoritmos , Genoma , Genómica
3.
Hum Mutat ; 39(3): 333-344, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266534

RESUMEN

Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.


Asunto(s)
Diarrea/congénito , Diarrea/genética , Predisposición Genética a la Enfermedad , Proteínas Munc18/genética , Mutación/genética , Miosina Tipo V/genética , Proteínas Qa-SNARE/genética , Animales , Humanos
4.
Bioinformatics ; 32(14): 2176-83, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27153686

RESUMEN

MOTIVATION: While the size and number of biobanks, patient registries and other data collections are increasing, biomedical researchers still often need to pool data for statistical power, a task that requires time-intensive retrospective integration. RESULTS: To address this challenge, we developed MOLGENIS/connect, a semi-automatic system to find, match and pool data from different sources. The system shortlists relevant source attributes from thousands of candidates using ontology-based query expansion to overcome variations in terminology. Then it generates algorithms that transform source attributes to a common target DataSchema. These include unit conversion, categorical value matching and complex conversion patterns (e.g. calculation of BMI). In comparison to human-experts, MOLGENIS/connect was able to auto-generate 27% of the algorithms perfectly, with an additional 46% needing only minor editing, representing a reduction in the human effort and expertise needed to pool data. AVAILABILITY AND IMPLEMENTATION: Source code, binaries and documentation are available as open-source under LGPLv3 from http://github.com/molgenis/molgenis and www.molgenis.org/connect CONTACT: : m.a.swertz@rug.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bancos de Muestras Biológicas , Biología Computacional/métodos , Fenotipo , Programas Informáticos , Algoritmos , Ontologías Biológicas , Humanos
6.
Nucleic Acids Res ; 42(Database issue): D794-801, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217915

RESUMEN

Interactions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade. We present WormQTL(HD) (Human Disease), a database that quantitatively and systematically links expression Quantitative Trait Loci (eQTL) findings in C. elegans to gene-disease associations in man. WormQTL(HD), available online at http://www.wormqtl-hd.org, is a user-friendly set of tools to reveal functionally coherent, evolutionary conserved gene networks. These can be used to predict novel gene-to-gene associations and the functions of genes underlying the disease of interest. We created a new database that links C. elegans eQTL data sets to human diseases (34 337 gene-disease associations from OMIM, DGA, GWAS Central and NHGRI GWAS Catalogue) based on overlapping sets of orthologous genes associated to phenotypes in these two species. We utilized QTL results, high-throughput molecular phenotypes, classical phenotypes and genotype data covering different developmental stages and environments from WormQTL database. All software is available as open source, built on MOLGENIS and xQTL workbench.


Asunto(s)
Caenorhabditis elegans/genética , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Enfermedad/genética , Variación Genética , Sitios de Carácter Cuantitativo , Animales , Expresión Génica , Genoma de los Helmintos , Genómica , Humanos , Internet , Presión Osmótica , Fenotipo
7.
Hum Mutat ; 36(7): 712-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25871441

RESUMEN

Next-generation sequencing in clinical diagnostics is providing valuable genomic variant data, which can be used to support healthcare decisions. In silico tools to predict pathogenicity are crucial to assess such variants and we have evaluated a new tool, Combined Annotation Dependent Depletion (CADD), and its classification of gene variants in Lynch syndrome by using a set of 2,210 DNA mismatch repair gene variants. These had already been classified by experts from InSiGHT's Variant Interpretation Committee. Overall, we found CADD scores do predict pathogenicity (Spearman's ρ = 0.595, P < 0.001). However, we discovered 31 major discrepancies between the InSiGHT classification and the CADD scores; these were explained in favor of the expert classification using population allele frequencies, cosegregation analyses, disease association studies, or a second-tier test. Of 751 variants that could not be clinically classified by InSiGHT, CADD indicated that 47 variants were worth further study to confirm their putative pathogenicity. We demonstrate CADD is valuable in prioritizing variants in clinically relevant genes for further assessment by expert classification teams.


Asunto(s)
Biología Computacional , Reparación de la Incompatibilidad de ADN , Variación Genética , Modelos Moleculares , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
8.
Nucleic Acids Res ; 41(Database issue): D738-43, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23180786

RESUMEN

Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype-phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers.


Asunto(s)
Caenorhabditis/genética , Bases de Datos Genéticas , Sitios de Carácter Cuantitativo , Animales , Caenorhabditis elegans/genética , Expresión Génica , Estudios de Asociación Genética , Variación Genética , Internet
9.
Brief Bioinform ; 13(2): 135-42, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22396485

RESUMEN

During a meeting of the SYSGENET working group 'Bioinformatics', currently available software tools and databases for systems genetics in mice were reviewed and the needs for future developments discussed. The group evaluated interoperability and performed initial feasibility studies. To aid future compatibility of software and exchange of already developed software modules, a strong recommendation was made by the group to integrate HAPPY and R/qtl analysis toolboxes, GeneNetwork and XGAP database platforms, and TIQS and xQTL processing platforms. R should be used as the principal computer language for QTL data analysis in all platforms and a 'cloud' should be used for software dissemination to the community. Furthermore, the working group recommended that all data models and software source code should be made visible in public repositories to allow a coordinated effort on the use of common data structures and file formats.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Algoritmos , Animales , Redes Reguladoras de Genes , Ratones/genética , Sitios de Carácter Cuantitativo , Programas Informáticos
10.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39302238

RESUMEN

The Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analyzing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing, and multiomics data. Here we report on the data infrastructure devised and created to support this co-analysis. This infrastructure enables users to store, find, connect, and analyze data and metadata in a collaborative manner. Pseudonymized phenotypic and raw experimental data are submitted to the RD-Connect Genome-Phenome Analysis Platform and processed through standardized pipelines. Resulting files and novel produced omics data are sent to the European Genome-Phenome Archive, which adds unique file identifiers and provides long-term storage and controlled access services. MOLGENIS "RD3" and Café Variome "Discovery Nexus" connect data and metadata and offer discovery services, and secure cloud-based "Sandboxes" support multiparty data analysis. This successfully deployed and useful infrastructure design provides a blueprint for other projects that need to analyze large amounts of heterogeneous data.


Asunto(s)
Enfermedades Raras , Enfermedades Raras/genética , Humanos , Bases de Datos Genéticas , Fenotipo , Metadatos , Biología Computacional/métodos , Genómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA