RESUMEN
Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.
Asunto(s)
Microbiota , Humanos , Anciano , Preescolar , Adulto , Niño , Persona de Mediana Edad , Adolescente , Anciano de 80 o más Años , Masculino , Femenino , Lactante , Adulto Joven , ARN Ribosómico 16S/genética , Estudios Transversales , Recién Nacido , Sistema Respiratorio/microbiología , Longevidad , Nasofaringe/microbiología , Saliva/microbiología , AmbienteRESUMEN
The discovery of the Archaea is a major scientific hallmark of the twentieth century. Since then, important features of their cell biology, physiology, ecology, and diversity have been revealed. Over the course of some 40 years, the diversity of known archaea has expanded from 2 to about 30 phyla comprising over 20,000 species. Most of this archaeal diversity has been revealed by environmental 16S rRNA gene amplicon sequencing surveys using a broad range of universal and targeted primers. Of the few primers that target a large fraction of known archaeal diversity, all display a bias against recently discovered lineages, which limits studies aiming to survey overall archaeal diversity. Induced by genomic exploration of archaeal diversity, and improved phylogenomics approaches, archaeal taxonomic classification has been frequently revised. Due to computational limitations and continued discovery of new lineages, a stable archaeal phylogeny is not yet within reach. Obtaining phylogenetic and taxonomic consensus of archaea should be a high priority for the archaeal research community.
Asunto(s)
Archaea , Ecología , Archaea/genética , Genómica , Filogenia , ARN Ribosómico 16S/genéticaRESUMEN
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Asunto(s)
Piel , Staphylococcus , Humanos , Staphylococcus/genética , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Staphylococcus epidermidis/genética , GenómicaRESUMEN
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Asunto(s)
Escherichia coli , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina , Escherichia coli/metabolismo , Escherichia coli/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Anticodón/metabolismo , Anticodón/química , Codón Iniciador/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genéticaRESUMEN
The intestinal barrier consists of mucosal, epithelial, and immunological barriers and serves as a dynamic interface between the host and its environment. Disruption of the intestinal barrier integrity is a leading cause of various gastrointestinal diseases, such as inflammatory bowel disease. The homeostasis of the intestinal barrier is tightly regulated by crosstalk between gut microbes and the immune system; however, the implication of the immune system on the imbalance of gut microbes that disrupts barrier integrity remains to be fully elucidated. An inhibitory immunoglobulin-like receptor, Allergin-1, is expressed on mast cells and dendritic cells and inhibits Toll-like receptor (TLR)-2 and TLR-4 signaling in these cells. Since TLRs are major sensors of microbiota and are involved in local epithelial homeostasis, we investigated the role of Allergin-1 in maintaining intestinal homeostasis. Allergin-1-deficient (Milr1-/-) mice exhibited more severe dextran sulfate sodium (DSS)-induced colitis than did wild-type (WT) mice. Milr1-/- mice showed an enhanced intestinal permeability compared with WT mice even before DSS administration. Treatment of Milr1-/- mice with neomycin, but not ampicillin, restored intestinal barrier integrity. The 16S rRNA gene sequencing analysis demonstrated that Bifidobacterium pseudolongum was the dominant bacterium in Milr1-/- mice after treatment with ampicillin. Although the transfer of B. pseudolongum to germ-free WT mice had no effect on intestinal permeability, its transfer into ampicillin-treated WT mice enhanced intestinal permeability. These results demonstrated that Allergin-1 deficiency enhanced intestinal dysbiosis with expanded B. pseudolongum, which contributes to intestinal barrier dysfunction in collaboration with neomycin-sensitive and ampicillin-resistant microbiota.
Asunto(s)
Disbiosis , Mucosa Intestinal , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Disbiosis/inmunología , Ratones , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Sulfato de Dextran , Microbioma Gastrointestinal/inmunología , Colitis/inmunología , Colitis/microbiología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Neomicina/farmacología , PermeabilidadRESUMEN
Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incompletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudinally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of microbe and metabolite levels identified modules, which differed significantly in ALS versus control participants. Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, primarily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible causality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Microbioma Gastrointestinal/genética , Biomarcadores , LípidosRESUMEN
BACKGROUND: Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown. RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS: Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.
Asunto(s)
Caenorhabditis elegans , Microbiota , Animales , Microbiota/fisiología , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/microbiología , Nematodos/fisiología , Nematodos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , EcosistemaRESUMEN
BACKGROUND: The selection of primer pairs in sequencing-based research can greatly influence the results, highlighting the need for a tool capable of analysing their performance in-silico prior to the sequencing process. We therefore propose PrimerEvalPy, a Python-based package designed to test the performance of any primer or primer pair against any sequencing database. The package calculates a coverage metric and returns the amplicon sequences found, along with information such as their average start and end positions. It also allows the analysis of coverage for different taxonomic levels. RESULTS: As a case study, PrimerEvalPy was used to test the most commonly used primers in the literature against two oral 16S rRNA gene databases containing bacteria and archaea. The results showed that the most commonly used primer pairs in the oral cavity did not match those with the highest coverage. The best performing primer pairs were found for the detection of oral bacteria and archaea. CONCLUSIONS: This demonstrates the importance of a coverage analysis tool such as PrimerEvalPy to find the best primer pairs for specific niches. The software is available under the MIT licence at https://gitlab.citius.usc.es/lara.vazquez/PrimerEvalPy .
Asunto(s)
Archaea , Bacterias , Cartilla de ADN , Microbiota , ARN Ribosómico 16S , Programas Informáticos , Microbiota/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Archaea/genética , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , Humanos , Boca/microbiología , Simulación por ComputadorRESUMEN
BACKGROUND: With the emergence of Oxford Nanopore technology, now the on-site sequencing of 16S rRNA from environments is available. Due to the error level and structure, the analysis of such data demands some database of reference sequences. However, many taxa from complex and diverse environments, have poor representation in publicly available databases. In this paper, we propose the METASEED pipeline for the reconstruction of full-length 16S sequences from such environments, in order to improve the reference for the subsequent use of on-site sequencing. RESULTS: We show that combining high-precision short-read sequencing of both 16S and full metagenome from the same samples allow us to reconstruct high-quality 16S sequences from the more abundant taxa. A significant novelty is the carefully designed collection of metagenome reads that matches the 16S amplicons, based on a combination of uniqueness and abundance. Compared to alternative approaches this produces superior results. CONCLUSION: Our pipeline will facilitate numerous studies associated with various unknown microorganisms, thus allowing the comprehension of the diverse environments. The pipeline is a potential tool in generating a full length 16S rRNA gene database for any environment.
Asunto(s)
Metagenoma , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Metagenoma/genética , Análisis de Secuencia de ADN/métodos , Bases de Datos GenéticasRESUMEN
BACKGROUND: Clustering of sequences into operational taxonomic units (OTUs) and denoising methods are a mainstream stopgap to taxonomically classifying large numbers of 16S rRNA gene sequences. Environment-specific reference databases generally yield optimal taxonomic assignment. RESULTS: We developed SpeciateIT, a novel taxonomic classification tool which rapidly and accurately classifies individual amplicon sequences ( https://github.com/Ravel-Laboratory/speciateIT ). We also present vSpeciateDB, a custom reference database for the taxonomic classification of 16S rRNA gene amplicon sequences from vaginal microbiota. We show that SpeciateIT requires minimal computational resources relative to other algorithms and, when combined with vSpeciateDB, affords accurate species level classification in an environment-specific manner. CONCLUSIONS: Herein, two resources with new and practical importance are described. The novel classification algorithm, SpeciateIT, is based on 7th order Markov chain models and allows for fast and accurate per-sequence taxonomic assignments (as little as 10 min for 107 sequences). vSpeciateDB, a meticulously tailored reference database, stands as a vital and pragmatic contribution. Its significance lies in the superiority of this environment-specific database to provide more species-resolution over its universal counterparts.
Asunto(s)
Algoritmos , Microbiota , ARN Ribosómico 16S , Vagina , ARN Ribosómico 16S/genética , Microbiota/genética , Vagina/microbiología , Femenino , Humanos , Programas Informáticos , Bases de Datos GenéticasRESUMEN
Surveillance for genetic variation of microbial pathogens, both within and among species, plays an important role in informing research, diagnostic, prevention, and treatment activities for disease control. However, large-scale systematic screening for novel genotypes remains challenging in part due to technological limitations. Towards addressing this challenge, we present an advancement in universal microbial high resolution melting (HRM) analysis that is capable of accomplishing both known genotype identification and novel genotype detection. Specifically, this novel surveillance functionality is achieved through time-series modeling of sequence-defined HRM curves, which is uniquely enabled by the large-scale melt curve datasets generated using our high-throughput digital HRM platform. Taking the detection of bacterial genotypes as a model application, we demonstrate that our algorithms accomplish an overall classification accuracy over 99.7% and perform novelty detection with a sensitivity of 0.96, specificity of 0.96 and Youden index of 0.92. Since HRM-based DNA profiling is an inexpensive and rapid technique, our results add support for the feasibility of its use in surveillance applications.
Asunto(s)
Genotipo , Aprendizaje Automático , ADN Bacteriano/genética , Algoritmos , Desnaturalización de Ácido Nucleico/genéticaRESUMEN
Gut microbiota-derived microbial compounds may link to the pathogenesis of colorectal cancer (CRC). However, the role of the host-microbiome in the incidence and progression of CRC remains elusive. We performed 16S rRNA sequencing, metabolomics, and proteomic studies on samples from 85 CRC patients who underwent colonoscopy examination and found two distinct changed patterns of microbiome in CRC patients. The relative abundances of Catabacter and Mogibacterium continuously increased from intramucosal carcinoma to advanced stages, whereas Clostridium, Anaerostipes, Vibrio, Flavonifractor, Holdemanella, and Hungatella were significantly altered only in intermediate lesions. Fecal metabolomics analysis exhibited consistent increases in bile acids, indoles, and urobilin as well as a decrease in heme. Serum metabolomics uncovered the highest levels of bilin, glycerides, and nucleosides together with the lowest levels of bile acids and amino acids in the stage of intermediate lesions. Three fecal and one serum dipeptides were elevated in the intermediate lesions. Proteomics analysis of colorectal tissues showed that oxidation and autophagy through the PI3K/Akt-mTOR signaling pathway contribute to the development of CRC. Diagnostic analysis showed multiomics features have good predictive capability, with AUC greater than 0.85. Our overall findings revealed new candidate biomarkers for CRC, with potentially significant diagnostic and prognostic capabilities.
Asunto(s)
Neoplasias Colorrectales , Heces , Microbioma Gastrointestinal , Metabolómica , Proteómica , ARN Ribosómico 16S , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteómica/métodos , Heces/microbiología , Heces/química , Metabolómica/métodos , Masculino , ARN Ribosómico 16S/genética , Femenino , Persona de Mediana Edad , Anciano , Transducción de Señal , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , MultiómicaRESUMEN
Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas de Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Plastidios/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Mutación , Metiltransferasas/genética , Metiltransferasas/metabolismoRESUMEN
BACKGROUND: Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS: With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS: The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Asunto(s)
Microbiota , Humanos , ARN Ribosómico 16S/genética , Genes de ARNr , Filogenia , Análisis de Secuencia de ADN/métodos , Microbiota/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.
RESUMEN
Bacterial flora are present in various parts of the human body, including the intestine, and are thought to be involved in the etiology of various diseases such as multiple sclerosis, intestinal diseases, cancer, and uterine diseases. In recent years, the presence of bacterial 16S rRNA genes has been revealed in blood, which was previously thought to be a sterile environment, and characteristic blood microbiomes have been detected in various diseases. However, the mechanism and the origin of the bacterial information are unknown. In this study, we performed 16S rRNA metagenomic analysis of bacterial DNA in serum extracellular vesicles from five healthy donors and seven patients with renal cell carcinoma and detected Cutibacterium acnes DNA as a characteristic bacterial DNA in the serum extracellular vesicles of patients with renal cell carcinoma. In addition, C. acnes DNA was significantly reduced in postoperative serum extracellular vesicles from patients with renal cell carcinoma compared with that in preoperative serum extracellular vesicles from these patients and was also detected in tumor tissue and extracellular vesicles from tumor tissue-associated microbiota, suggesting an association between C. acnes extracellular vesicles and renal cell carcinoma. C. acnes extracellular vesicles were taken up by renal carcinoma cells to enhance their proliferative potential. C. acnes extracellular vesicles also exhibited tumor-promoting activity in a mouse model of renal cancer allografts with enhanced angiogenesis. These results suggest that extracellular vesicles released by C. acnes localized in renal cell carcinoma tissues act in a tumor-promoting manner.
Asunto(s)
Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , Vesículas Extracelulares/metabolismo , Carcinoma de Células Renales/microbiología , Carcinoma de Células Renales/patología , Humanos , Animales , Neoplasias Renales/microbiología , Neoplasias Renales/patología , Ratones , ARN Ribosómico 16S/genética , Línea Celular Tumoral , Femenino , Proliferación Celular , ADN Bacteriano/genética , Propionibacteriaceae/genética , MasculinoRESUMEN
Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Transgénicos , Simbióticos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/microbiología , Simbióticos/administración & dosificación , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Presenilina-1/metabolismo , Presenilina-1/genética , Mononucleótido de Nicotinamida/metabolismo , Masculino , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/dietoterapia , Disbiosis/terapiaRESUMEN
Colorectal cancer (CRC) is the third most common cancer in the world. With the development of high-throughput gene sequencing technology, homeostasis imbalance of the intestinal microbiota has been proven to play a key role in the pathogenesis of CRC. Furthermore, fecal bacteria transplantation (FMT) has been shown to alter the intestinal microecology, and is potentially an effective treatment for CRC. Sodium selenite plays an important role in anticancer adjuvant therapy due to its high pro-oxidation characteristics. In this study, a murine CRC tumor model was induced by AOM/DSS, and CRC mice were treated by FMT, sodium selenite, and FMT combined with sodium selenite. The results showed that FMT, sodium selenite, and FMT combined with sodium selenite inhibited the occurrence of CRC in mice, increased the abundance of beneficial intestinal bacteria, produced different microorganisms, and changed the metabolic pathways of the intestinal microbiota. In summary, FMT, sodium selenite, and FMT combined with sodium selenite can inhibit the occurrence of CRC by increasing the abundance of beneficial bacteria and regulating phenotypes and metabolic pathways. Notably, the effect of FMT combined with sodium selenite in reducing the number of tumors, protecting intestinal tissues, and restoring the diversity and richness of the intestinal microbiota is superior to that of FMT alone or sodium selenite alone. The results of this study provide new ideas for the application of FMT and selenium in the treatment of CRC.
Asunto(s)
Neoplasias Colorrectales , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Selenito de Sodio , Animales , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Selenito de Sodio/farmacología , Selenio/farmacología , Masculino , Ratones Endogámicos C57BL , Terapia CombinadaRESUMEN
Sponges (phylum Porifera) harbour specific microbial communities that drive the ecology and evolution of the host. Understanding the structure and dynamics of these communities is emerging as a primary focus in marine microbial ecology research. Much of the work to date has focused on sponges from warm and shallow coastal waters, while sponges from the deep ocean remain less well studied. Here, we present a metataxonomic analysis of the microbial consortia associated with 23 individual deep-sea sponges. We identify a high abundance of archaea relative to bacteria across these communities, with certain sponge microbiomes comprising more than 90â% archaea. Specifically, the archaeal family Nitrosopumilaceae is prolific, comprising over 99â% of all archaeal reads. Our analysis revealed that sponge microbial communities reflect the host sponge phylogeny, indicating a key role for host taxonomy in defining microbiome composition. Our work confirms the contribution of both evolutionary and environmental processes to the composition of microbial communities in deep-sea sponges.
Asunto(s)
Archaea , Bacterias , Microbiota , Filogenia , Poríferos , Poríferos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Animales , Océano Atlántico , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , BiodiversidadRESUMEN
BACKGROUND: The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS: Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS: In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.