Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(28): e2310523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295042

RESUMEN

Electrochemical capacitors (ECs) show great perspective in alternate current (AC) filtering once they simultaneously reach ultra-fast response and high capacitance density. Nevertheless, the structure-design criteria of the two key properties are often mutually incompatible in electrode construction. Herein, it is proposed that combining vertically oriented porous carbon with enhanced interfacial capacitance (Ci) can efficiently solve this issue. Theoretically, the density function theory calculation shows that the Ci of a carbon electrode can be enhanced by boron doping due to the corresponding compact induced charge layer. Experimentally, the vertical-oriented boron-doped graphene nanowalls (BGNWs) electrodes, whose Ci is enhanced from 4.20 to 10.16 µF cm-2 upon boron doping, are prepared on a large scale (480 cm2) using a hot-filament chemical vapor deposition technique (HFCVD). Owing to the high Ci and vertically oriented porous structure, BGNWs-based EC has a high capacitance density of 996 µF cm-2 with a phase angle of - 79.4° at 120 Hz in aqueous electrolyte and a high energy density of 1953 µFV2 cm-2 in organic electrolyte. As a result, the EC is capable of smoothing 120 Hz ripples for 60 Hz AC filtering. These results provide enlightening insights on designing high-performance ECs for high-frequency applications.

2.
Materials (Basel) ; 12(4)2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30781599

RESUMEN

There is strong interest in developing high-frequency (HF) supercapacitors or electrochemical capacitors (ECs), which can work at the hundreds to kilo hertz range for line-frequency alternating current (AC) filtering in the substitution of bulky aluminum electrolytic capacitors, with broad applications in the power and electronic fields. Although great progress has been achieved in the studies of electrode materials for ECs, most of them are not suitable to work in this high frequency range because of the slow electrochemical processes involved. Edge-oriented vertical graphene (VG) networks on 3D scaffolds have a unique structure that offers straightforward pore configuration, reasonable surface area, and high electronic conductivity, thus allowing the fabrication of HF-ECs. Comparatively, highly conductive freestanding cross-linked carbon nanofibers (CCNFs), derived from bacterial cellulose in a rapid plasma pyrolysis process, can also provide a large surface area but free of rate-limiting micropores, and are another good candidate for HF-ECs. In this mini review, advances in these fields are summarized, with emphasis on our recent contributions in the study of these materials and their electrochemical properties including preliminary demonstrations of HF-ECs for AC line filtering and pulse power storage applications.

3.
Nanomicro Lett ; 10(1): 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30393658

RESUMEN

High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA