RESUMEN
BACKGROUND: Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE: Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS: Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS: At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS: ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.
Asunto(s)
Asma , Interleucina-33 , Ratones , Animales , Humanos , Interleucina-33/metabolismo , Ratones Noqueados , Pulmón , Epitelio , Acetilcolina , Alérgenos , Colinérgicos , Receptores Colinérgicos/metabolismoRESUMEN
Fish oil has been known for its antioxidant, cardioprotective, anti-inflammatory, and neuroprotective characteristics due to the presence of polyunsaturated fatty acids (PUFAs) that are essential for optimal brain function and mental health. The present study investigated the effect of Carcharhinus Bleekeri (Shark Fish) oil on learning and memory functions in scopolamine-induced amnesia in rats. Locomotor and memory-enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the open field and passive avoidance paradigm. Forty male Albino mice were divided into 4 equal groups (n = 10) as bellow: 1 - control (received 0.9% saline), 2 - SCOP (received scopolamine 2 mg/kg for 21 days), 3 - SCOP + SFO (received scopolamine and fish oil 5 mg/kg/ day for 21 days), 4 - SCOP + Donepezil groups (received 3 mg/kg/day for 21 days). SFO produced significant (P < 0.01) locomotor and memory-enhancing activities in open-field and passive avoidance paradigm models. Additionally, SFO restored the Acetylcholine (ACh) concentration in the hippocampus (p < 0.05) and remarkably prevented the degradation of monoamines. Histology of brain tissue showed marked cellular distortion in the scopolamine-treated group, while the SFO treatment restored distortion in the brain's hippocampus region. These results suggest that the SFO significantly ameliorates scopolamine-induced spatial memory impairment by attenuating the ACh and monoamine concentrations in the rat's hippocampus.
Asunto(s)
Aceites de Pescado , Escopolamina , Animales , Masculino , Ratones , Ratas , Acetilcolina/farmacología , Aceites de Pescado/farmacología , Hipocampo/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Modelos TeóricosRESUMEN
The alteration of the enteric nervous system (ENS) and its role in neuroimmune modulation remain obscure in the pathogenesis of inflammatory bowel diseases (IBDs). Here, by using the xCell tool and the latest immunolabeling-enabled three-dimensional (3D) imaging of solvent-cleared organs technique, we found severe pathological damage of the entire ENS and decreased expression of choline acetyltransferase (ChAT) in IBD patients. As a result, acetylcholine (ACh), a major neurotransmitter of the nervous system synthesized by ChAT, was greatly reduced in colon tissues of both IBD patients and colitis mice. Importantly, administration of ACh via enema remarkably ameliorated colitis, which was proved to be directly dependent on monocytic myeloid-derived suppressor cells (M-MDSCs). Furthermore, ACh was demonstrated to promote interleukin-10 secretion of M-MDSCs and suppress the inflammation through activating the nAChR/ERK pathway. The present data reveal that the cholinergic signaling pathway in the ENS is impaired during colitis and uncover an ACh-MDSCs neuroimmune regulatory pathway, which may offer promising therapeutic strategies for IBDs.
Asunto(s)
Acetilcolina/administración & dosificación , Sistema Nervioso Entérico/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Interleucina-10/metabolismo , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Animales , Colina O-Acetiltransferasa/metabolismo , Sistema Nervioso Entérico/fisiopatología , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/fisiopatología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismoRESUMEN
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
RESUMEN
The recent pandemic increased attention to the need for appropriated ventilation and good air quality as efficient measures to achieve safe and healthy indoor air. This work provides a novel methodology for continuously evaluating ventilation in public areas using modern rapid response sensors (RRS). This methodology innovatively assesses the ventilation of a space by combining a quantitative estimation of the real air exchange in the space-obtained from CO2 experimental RRS measurements and the characteristics of and activity in the space-and indoor and outdoor RRS measurements of other pollutants, with healthy recommendations from different organisations. The methodology allows space managers to easily evaluate, in a continuous form, the appropriateness of their ventilation strategy, thanks to modern RRS measurements and direct calculations (implemented here in a web app), even in situations of full activity. The methodology improves on the existing standards, which imply the release of tracer gases and expert intervention, and could also be used to set a control system that measures continuously and adapts the ventilation to changes in indoor occupancy and activity, guaranteeing safe and healthy air in an energy-efficient way. Sample public concurrence spaces with different conditions are used to illustrate the methodology.
RESUMEN
For at least two reasons, the current transgenic animal models of Alzheimer's disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD-the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-ß (iAß) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aß is generated independently of Aß protein precursor (AßPP) and is retained inside the neuron as iAß. Within the framework of the ACH2.0, AßPP-derived iAß accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AßPP-derived iAß cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AßPP-independent iAß generation pathway; the disease commences only when this pathway is operational. The iAß produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer's disease but rather the effects of the neuronal ISR sustained by AßPP-derived iAß, that this is due to the lack of the operational AßPP-independent iAß production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AßPP-independent iAß production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer's disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Modelos Animales de EnfermedadRESUMEN
The centrality of amyloid-beta (Aß) is an indisputable tenet of Alzheimer's disease (AD). It was initially indicated by the detection (1991) of a mutation within Aß protein precursor (AßPP) segregating with the disease, which served as a basis for the long-standing Amyloid Cascade Hypothesis (ACH) theory of AD. In the intervening three decades, this notion was affirmed and substantiated by the discovery of numerous AD-causing and AD-protective mutations with all, without an exception, affecting the structure, production, and intraneuronal degradation of Aß. The ACH postulated that the disease is caused and driven by extracellular Aß. When it became clear that this is not the case, and the ACH was largely discredited, a new theory of AD, dubbed ACH2.0 to re-emphasize the centrality of Aß, was formulated. In the ACH2.0, AD is caused by physiologically accumulated intraneuronal Aß (iAß) derived from AßPP. Upon reaching the critical threshold, it triggers activation of the autonomous AßPP-independent iAß generation pathway; its output is retained intraneuronally and drives the AD pathology. The bridge between iAß derived from AßPP and that generated independently of AßPP is the neuronal integrated stress response (ISR) elicited by the former. The ISR severely suppresses cellular protein synthesis; concurrently, it activates the production of a small subset of proteins, which apparently includes components necessary for operation of the AßPP-independent iAß generation pathway that are absent under regular circumstances. The above sequence of events defines "conventional" AD, which is both caused and driven by differentially derived iAß. Since the ISR can be elicited by a multitude of stressors, the logic of the ACH2.0 mandates that another class of AD, referred to as "unconventional", has to occur. Unconventional AD is defined as a disease where a stressor distinct from AßPP-derived iAß elicits the neuronal ISR. Thus, the essence of both, conventional and unconventional, forms of AD is one and the same, namely autonomous, self-sustainable, AßPP-independent production of iAß. What distinguishes them is the manner of activation of this pathway, i.e., the mode of causation of the disease. In unconventional AD, processes occurring at locations as distant from and seemingly as unrelated to the brain as, say, the knee can potentially trigger the disease. The present study asserts that these processes include traumatic brain injury (TBI), chronic traumatic encephalopathy, viral and bacterial infections, and a wide array of inflammatory conditions. It considers the pathways which are common to all these occurrences and culminate in the elicitation of the neuronal ISR, analyzes the dynamics of conventional versus unconventional AD, shows how the former can morph into the latter, explains how a single TBI can hasten the occurrence of AD and why it takes multiple TBIs to trigger the disease, and proposes the appropriate therapeutic strategies. It posits that yet another class of unconventional AD may occur where the autonomous AßPP-independent iAß production pathway is initiated by an ISR-unrelated activator, and consolidates the above notions in a theory of AD, designated ACH2.0/E (for expanded ACH2.0), which incorporates the ACH2.0 as its special case and retains the centrality of iAß produced independently of AßPP as the driving agent of the disease.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Humanos , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Progresión de la Enfermedad , MutaciónRESUMEN
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAß) via the activation of BACE1 (Beta-site Aß-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Estrés FisiológicoRESUMEN
The objectives of this study were to investigate the anti-fatigue effects of Paris polyphylla polysaccharide component 1 (PPPm-1) and explore its mechanisms. A mouse model of exercise-induced fatigue was established by weight-bearing swimming to observe the effects of different concentrations of PPPm-1 on weight-bearing swimming time. The anti-fatigue effect of PPPm-1 was determined by the effects of contraction amplitude, contraction rate, and diastolic rate of the frog gastrocnemius muscle in vivo before and after infiltration with 5 mg/mL PPPm-1. The effects of PPPm-1 on the contents of blood lactate, serum urea nitrogen, hepatic glycogen, muscle glycogen in the exercise fatigue model of mice, and acetylcholine (ACh) content and acetylcholinesterase (AChE) activity at the junction of the frog sciatic nerve-gastrocnemius under normal physiological, and Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of the frog gastrocnemius were determined by enzyme-linked immunosorbent assay (ELISA), to investigate the anti-fatigue mechanisms of PPPm-1. The results showed that PPPm-1 could significantly prolong the weight-bearing swimming time in mice (P < 0.01), decrease the contents of blood lactate and serum urea nitrogen, increase the contents of the hepatic glycogen and muscle glycogen of mice after exercise fatigue compared with those of the control group, and there was extremely significant difference in most indicators (P < 0.01). The 5 mg/mL of PPPm-1 could significantly promote the contraction amplitude, contraction rate, and relaxation rate of the gastrocnemius muscle in the frogs, and the content of ACh at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01), but it had obvious inhibitory effetc on the activity of AChE at the junction of the frog sciatic nerve-gastrocnemius (P < 0.01). PPPm-1 could increase the Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of gastrocnemius in the frogs (for Ca2+-Mg2+-ATPase, P < 0.01). The above results suggested that the PPPm-1 had a good anti-fatigue effect, and its main mechanisms were related to improving endurance and glycogen reserve, reducing glycogen consumption, lactate and serum urea nitrogen accumulation, and promoting Ca2+ influx.
Asunto(s)
Músculo Esquelético , Polisacáridos , Animales , Polisacáridos/farmacología , Polisacáridos/química , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Fatiga Muscular/efectos de los fármacos , Masculino , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Natación , Glucógeno/metabolismo , Acetilcolinesterasa/metabolismo , Fatiga/tratamiento farmacológico , Nitrógeno de la Urea Sanguínea , Acetilcolina/metabolismo , Contracción Muscular/efectos de los fármacos , ATPasa de Ca(2+) y Mg(2+)/metabolismoRESUMEN
Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.
Asunto(s)
Inflamación/genética , Interleucinas/genética , Peroxidasa/genética , Psoriasis/genética , Enfermedades de la Piel/genética , Adulto , Animales , Citocinas/genética , Trampas Extracelulares/genética , Femenino , Humanos , Inflamación/patología , Interleucina-1/genética , Interleucinas/metabolismo , Masculino , Ratones , Mutación/genética , Neutrófilos/metabolismo , Psoriasis/patología , Enfermedades Raras/enzimología , Enfermedades Raras/genética , Enfermedades Raras/patología , Piel/enzimología , Piel/patología , Enfermedades de la Piel/patologíaRESUMEN
Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.
Asunto(s)
Colina/metabolismo , Enfermedades del Colon/metabolismo , Mucosa Intestinal/metabolismo , Animales , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismoRESUMEN
BACKGROUND: Bidirectional communication between presynaptic and postsynaptic components contribute to the homeostasis of the synapse. In the neuromuscular synapse, the arrival of the nerve impulse at the presynaptic terminal triggers the molecular mechanisms associated with ACh release, which can be retrogradely regulated by the resulting muscle contraction. This retrograde regulation, however, has been poorly studied. At the neuromuscular junction (NMJ), protein kinase A (PKA) enhances neurotransmitter release, and the phosphorylation of the molecules of the release machinery including synaptosomal associated protein of 25 kDa (SNAP-25) and Synapsin-1 could be involved. METHODS: Accordingly, to study the effect of synaptic retrograde regulation of the PKA subunits and its activity, we stimulated the rat phrenic nerve (1 Hz, 30 min) resulting or not in contraction (abolished by µ-conotoxin GIIIB). Changes in protein levels and phosphorylation were detected by western blotting and cytosol/membrane translocation by subcellular fractionation. Synapsin-1 was localized in the levator auris longus (LAL) muscle by immunohistochemistry. RESULTS: Here we show that synaptic PKA Cß subunit regulated by RIIß or RIIα subunits controls activity-dependent phosphorylation of SNAP-25 and Synapsin-1, respectively. Muscle contraction retrogradely downregulates presynaptic activity-induced pSynapsin-1 S9 while that enhances pSNAP-25 T138. Both actions could coordinately contribute to decreasing the neurotransmitter release at the NMJ. CONCLUSION: This provides a molecular mechanism of the bidirectional communication between nerve terminals and muscle cells to balance the accurate process of ACh release, which could be important to characterize molecules as a therapy for neuromuscular diseases in which neuromuscular crosstalk is impaired.
Asunto(s)
Neurotransmisores , Sinapsinas , Animales , Ratas , Fosforilación , Transporte Biológico , HomeostasisRESUMEN
Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.
Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome del Seno Enfermo/genética , Mutación , Arritmias Cardíacas/metabolismo , Acetilcolina/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismoRESUMEN
Although the long-standing Amyloid Cascade Hypothesis (ACH) has been largely discredited, its main attribute, the centrality of amyloid-beta (Aß) in Alzheimer's disease (AD), remains the cornerstone of any potential interpretation of the disease: All known AD-causing mutations, without a single exception, affect, in one way or another, Aß. The ACH2.0, a recently introduced theory of AD, preserves this attribute but otherwise differs fundamentally from the ACH. It posits that AD is a two-stage disorder where both stages are driven by intraneuronal (rather than extracellular) Aß (iAß) albeit of two distinctly different origins. The first asymptomatic stage is the decades-long accumulation of Aß protein precursor (AßPP)-derived iAß to the critical threshold. This triggers the activation of the self-sustaining AßPP-independent iAß production pathway and the commencement of the second, symptomatic AD stage. Importantly, Aß produced independently of AßPP is retained intraneuronally. It drives the AD pathology and perpetuates the operation of the pathway; continuous cycles of the iAß-stimulated propagation of its own AßPP-independent production constitute an engine that drives AD, the AD Engine. It appears that the dynamics of AßPP-derived iAß accumulation is the determining factor that either drives Aging-Associated Cognitive Decline (AACD) and triggers AD or confers the resistance to both. Within the ACH2.0 framework, the ACH-based drugs, designed to lower levels of extracellular Aß, could be applicable in the prevention of AD and treatment of AACD because they reduce the rate of accumulation of AßPP-derived iAß. The present study analyzes their utility and concludes that it is severely limited. Indeed, their short-term employment is ineffective, their long-term engagement is highly problematic, their implementation at the symptomatic stages of AD is futile, and their evaluation in conventional clinical trials for the prevention of AD is impractical at best, impossible at worst, and misleading in between. In contrast, the ACH2.0-guided Next Generation Therapeutic Strategy for the treatment and prevention of both AD and AACD, namely the depletion of iAß via its transient, short-duration, targeted degradation by the novel ACH2.0-based drugs, has none of the shortcomings of the ACH-based drugs. It is potentially highly effective, easily evaluable in clinical trials, and opens up the possibility of once-in-a-lifetime-only therapeutic intervention for prevention and treatment of both conditions. It also identifies two plausible ACH2.0-based drugs: activators of physiologically occurring intra-iAß-cleaving capabilities of BACE1 and/or BACE2.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Envejecimiento , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & controlRESUMEN
With the long-standing amyloid cascade hypothesis (ACH) largely discredited, there is an acute need for a new all-encompassing interpretation of Alzheimer's disease (AD). Whereas such a recently proposed theory of AD is designated ACH2.0, its commonality with the ACH is limited to the recognition of the centrality of amyloid-ß (Aß) in the disease, necessitated by the observation that all AD-causing mutations affect, in one way or another, Aß. Yet, even this narrow commonality is superficial since AD-causing Aß of the ACH differs distinctly from that specified in the ACH2.0: Whereas in the former, the disease is caused by secreted extracellular Aß, in the latter, it is triggered by Aß-protein-precursor (AßPP)-derived intraneuronal Aß (iAß) and driven by iAß generated independently of AßPP. The ACH2.0 envisions AD as a two-stage disorder. The first, asymptomatic stage is a decades-long accumulation of AßPP-derived iAß, which occurs via internalization of secreted Aß and through intracellular retention of a fraction of Aß produced by AßPP proteolysis. When AßPP-derived iAß reaches critical levels, it activates a self-perpetuating AßPP-independent production of iAß that drives the second, devastating AD stage, a cascade that includes tau pathology and culminates in neuronal loss. The present study analyzes the dynamics of iAß accumulation in health and disease and concludes that it is the prime factor driving both AD and aging-associated cognitive decline (AACD). It discusses mechanisms potentially involved in AßPP-independent generation of iAß, provides mechanistic interpretations for all principal aspects of AD and AACD including the protective effect of the Icelandic AßPP mutation, the early onset of FAD and the sequential manifestation of AD pathology in defined regions of the affected brain, and explains why current mouse AD models are neither adequate nor suitable. It posits that while drugs affecting the accumulation of AßPP-derived iAß can be effective only protectively for AD, the targeted degradation of iAß is the best therapeutic strategy for both prevention and effective treatment of AD and AACD. It also proposes potential iAß-degrading drugs.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Envejecimiento/genética , Modelos Animales de Enfermedad , Disfunción Cognitiva/genéticaRESUMEN
Background: It has been reported diabetic gastroparesis is related to diabetic autonomic neuropathy of the gastrointestinal tract, and berberine (BBR) could ameliorate diabetic central and peripheral neuropathy. However, the influence of BBR on the function and motility of the gastric fundus nerve is unclear. Methods: A diabetic rat model was constructed, and HE staining was used to observe the morphological changes in the gastric fundus. The changes in cholinergic and nitrogen-related neurochemical indexes and the effects of BBR on them were measured using Elisa. The effects of BBR on the neural function and motility of gastric fundus were investigated by electric field stimulation (EFS) induced neurogenic response in vitro. Results: In the early stage of STZ-induced diabetic rats, the contractile response of gastric fundus induced by EFS was disorder, disturbance of contraction amplitude, and the cell bodies of neurons in the myenteric plexus of gastric fundus presented vacuolar lesions. Administration with BBR could improve the above symptoms. BBR further enhanced the contraction response in the presence of a NOS inhibitor or the case of inhibitory neurotransmitters removal. Interestingly, the activity of ACh could affect NO release directly and the enhancement of BBR on contractile response was canceled by calcium channel blockers completely. Conclusions: In the early stage of STZ-induced diabetic rats, the neurogenic contractile response disorder of the gastric fundus is mainly related to cholinergic and nitrergic nerve dysfunction. BBR promotes the release of ACh mainly by affecting the calcium channel to improve the neurological dysfunction of the gastric fundus.
RESUMEN
Successful execution of behavior requires coordinated activity and communication between multiple cell types. Studies using the relatively simple neural circuits of invertebrates have helped to uncover how conserved molecular and cellular signaling events shape animal behavior. To understand the mechanisms underlying neural circuit activity and behavior, we have been studying a simple circuit that drives egg-laying behavior in the nematode worm Caenorhabditis elegans Here we show that the sex-specific, ventral C (VC) motor neurons are important for vulval muscle contractility and egg laying in response to serotonin. Ca2+ imaging experiments show the VCs are active during times of vulval muscle contraction and vulval opening, and optogenetic stimulation of the VCs promotes vulval muscle Ca2+ activity. Blocking VC neurotransmission inhibits egg laying in response to serotonin and increases the failure rate of egg-laying attempts, indicating that VC signaling facilitates full vulval muscle contraction and opening of the vulva for efficient egg laying. We also find the VCs are mechanically activated in response to vulval opening. Optogenetic stimulation of the vulval muscles is sufficient to drive VC Ca2+ activity and requires muscle contractility, showing the presynaptic VCs and the postsynaptic vulval muscles can mutually excite each other. Together, our results demonstrate that the VC neurons facilitate efficient execution of egg-laying behavior by coordinating postsynaptic muscle contractility in response to serotonin and mechanosensory feedback.SIGNIFICANCE STATEMENT Many animal motor behaviors are modulated by the neurotransmitters, serotonin and ACh. Such motor circuits also respond to mechanosensory feedback, but how neurotransmitters and mechanoreceptors work together to coordinate behavior is not well understood. We address these questions using the egg-laying circuit in Caenorhabditis elegans where we can manipulate presynaptic neuron and postsynaptic muscle activity in behaving animals while recording circuit responses through Ca2+ imaging. We find that the cholinergic VC motoneurons are important for proper vulval muscle contractility and egg laying in response to serotonin. Muscle contraction also activates the VCs, forming a positive feedback loop that promotes full contraction for egg release. In all, mechanosensory feedback provides a parallel form of modulation that shapes circuit responses to neurotransmitters.
Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Motoras/fisiología , Oviposición/fisiología , Serotonina/farmacología , Conducta Sexual Animal/efectos de los fármacos , Animales , Señalización del Calcio/fisiología , Femenino , Genes Reporteros/genética , Masculino , Contracción Muscular/efectos de los fármacos , Músculos/inervación , Músculos/fisiología , Optogenética , Receptores Presinapticos/fisiología , Transmisión Sináptica/fisiología , Vulva/fisiologíaRESUMEN
Appropriate termination of the photoresponse in image-forming photoreceptors and downstream neurons is critical for an animal to achieve high temporal resolution. Although the cellular and molecular mechanisms of termination in image-forming photoreceptors have been extensively studied in Drosophila, the underlying mechanism of termination in their downstream large monopolar cells remains less explored. Here, we show that synaptic ACh signaling, from both amacrine cells (ACs) and L4 neurons, facilitates the rapid repolarization of L1 and L2 neurons. Intracellular recordings in female flies show that blocking synaptic ACh output from either ACs or L4 neurons leads to slow repolarization of L1 and L2 neurons. Genetic and electrophysiological studies in both male and female flies determine that L2 neurons express ACh receptors and directly receive ACh signaling. Moreover, our results demonstrate that synaptic ACh signaling from both ACs and L4 neurons simultaneously facilitates ERG termination. Finally, visual behavior studies in both male and female flies show that synaptic ACh signaling, from either ACs or L4 neurons to L2 neurons, is essential for the optomotor response of the flies in high-frequency light stimulation. Our study identifies parallel synaptic ACh signaling for repolarization of L1 and L2 neurons and demonstrates that synaptic ACh signaling facilitates L1 and L2 neuron repolarization to maintain the optomotor response of the fly on high-frequency light stimulation.SIGNIFICANCE STATEMENT The image-forming photoreceptor downstream neurons receive multiple synaptic inputs from image-forming photoreceptors and various types of interneurons. It remains largely unknown how these synaptic inputs modulate the neural activity and function of image-forming photoreceptor downstream neurons. We show that parallel synaptic ACh signaling from both amacrine cells and L4 neurons facilitates rapid repolarization of large monopolar cells in Drosophila and maintains the optomotor response of the fly on high-frequency light stimulation. This work is one of the first reports showing how parallel synaptic signaling modulates the activity of large monopolar cells and motion vision simultaneously.
Asunto(s)
Acetilcolina/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Drosophila , Femenino , Masculino , Sinapsis/metabolismoRESUMEN
BACKGROUND: Respiratory failure in severe coronavirus disease 2019 (COVID-19) is associated with a severe inflammatory response. Acetylcholine (ACh) reduces systemic inflammation in experimental bacterial and viral infections. Pyridostigmine increases the half-life of endogenous ACh, potentially reducing systemic inflammation. We aimed to determine if pyridostigmine decreases a composite outcome of invasive mechanical ventilation (IMV) and death in adult patients with severe COVID-19. METHODS: We performed a double-blinded, placebo-controlled, phase 2/3 randomized controlled trial of oral pyridostigmine (60 mg/day) or placebo as add-on therapy in adult patients admitted due to confirmed severe COVID-19 not requiring IMV at enrollment. The primary outcome was a composite of IMV or death by day 28. Secondary outcomes included reduction of inflammatory markers and circulating cytokines, and 90-day mortality. Adverse events (AEs) related to study treatment were documented and described. RESULTS: We recruited 188 participants (94 per group); 112 (59.6%) were men; the median (IQR) age was 52 (44-64) years. The study was terminated early due to a significant reduction in the primary outcome in the treatment arm and increased difficulty with recruitment. The primary outcome occurred in 22 (23.4%) participants in the placebo group vs. 11 (11.7%) in the pyridostigmine group (hazard ratio, 0.47, 95% confidence interval 0.24-0.9; P = 0.03). This effect was driven by a reduction in mortality (19 vs. 8 deaths, respectively). CONCLUSION: Our data indicate that adding pyridostigmine to standard care reduces mortality among patients hospitalized for severe COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adulto , Masculino , Humanos , Persona de Mediana Edad , Femenino , Bromuro de Piridostigmina/uso terapéutico , SARS-CoV-2 , Respiración Artificial , Inflamación , Resultado del TratamientoRESUMEN
We construct a compact model to mimic the membrane voltage response to the concentration of acetylcholine ([ACh]) which is mediated by the stochastic gating of acetylcholine (ACh) receptors. The patterns of the voltage depolarization against [ACh] as well as the accompanying voltage noises are presented. The mechanism of the voltage fluctuation that caused by the stochastic gating of receptors is explained. We consider that our results explain the frequently observed "end-plate (potential) noise" in physiology and electromyographic literature. These results, together with the requirements of evolution pressure on the motor units, explain reasonably the anatomical structure of the neuromuscular junction.