Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 115(8): 2686-2700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877783

RESUMEN

Application of physical forces, ranging from ultrasound to electric fields, is recommended in various clinical practice guidelines, including those for treating cancers and bone fractures. However, the mechanistic details of such treatments are often inadequately understood, primarily due to the absence of comprehensive study models. In this study, we demonstrate that an alternating magnetic field (AMF) inherently possesses a direct anti-cancer effect by enhancing oxidative phosphorylation (OXPHOS) and thereby inducing metabolic reprogramming. We observed that the proliferation of human glioblastoma multiforme (GBM) cells (U87 and LN229) was inhibited upon exposure to AMF within a specific narrow frequency range, including around 227 kHz. In contrast, this exposure did not affect normal human astrocytes (NHA). Additionally, in mouse models implanted with human GBM cells in the brain, daily exposure to AMF for 30 min over 21 days significantly suppressed tumor growth and prolonged overall survival. This effect was associated with heightened reactive oxygen species (ROS) production and increased manganese superoxide dismutase (MnSOD) expression. The anti-cancer efficacy of AMF was diminished by either a mitochondrial complex IV inhibitor or a ROS scavenger. Along with these observations, there was a decrease in the extracellular acidification rate (ECAR) and an increase in the oxygen consumption rate (OCR). This suggests that AMF-induced metabolic reprogramming occurs in GBM cells but not in normal cells. Our results suggest that AMF exposure may offer a straightforward strategy to inhibit cancer cell growth by leveraging oxidative stress through metabolic reprogramming.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Glioblastoma , Magnetoterapia , Reprogramación Metabólica , Fosforilación Oxidativa , Especies Reactivas de Oxígeno , Animales , Humanos , Ratones , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patología , Magnetoterapia/métodos , Campos Magnéticos , Reprogramación Metabólica/efectos de la radiación , Mitocondrias/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
BMC Plant Biol ; 24(1): 706, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054409

RESUMEN

BACKGROUND: Opuntia ficus-indica (L.) Miller is dominantly growing on degraded soils in arid and semi-arid areas. The plants might establish a strong association with arbuscular mycorrhizal fungi (AMF) to adapt to nutrient, drought, and herbivore insect stress. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels (SWA) on the biomass, nutrient concentration, nutritional composition, and nutrient digestibility of the spiny and spineless O. ficus-indica by inducing resistance to cochineal stress. One mother Opuntia ficus-indica cladode was planted in a single pot in each field with 24 kg mixed soil. AMF inoculums were cultured in sorghum plants in a greenhouse and were inoculated in the planted cladodes. The planted cladodes were arranged using a completely randomized design (CRD) with three factors: AMF (present and absent); O. ficus-indica type (spiny and spineless) and four water treatments with 0-25% of plant available soil water (SWA), 25-50% of SWA, 50-75% of SWA, and 75-100% of SWA. RESULTS: Drought stress reduced the below and above-ground biomass, cladode nutrient content, nutritional composition, and in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD). AMF colonization significantly increased biomass production with significant changes in the macro and micro-nutrient concentrations of O. ficus-indica. AMF inoculation significantly increased the IVDMD and IVOMD of both O. ficus-indica types by improving the biomass, organic matter (OM), crude protein (CP), and reduced fiber and ash contents. AMF-inoculated cladodes improved the nutrient concentrations of the cladodes. AMF caused an increase in biomass production, increased tolerance to cochineal stress, and improved nutrient concentration, nutritional composition, and nutrient digestibility performance of O. ficus-indica plants. CONCLUSIONS: AMF improved the performance of the O. ficus-indica plant to resist drought and cochineal stress and increased the biomass, nutrient concentration, nutritional composition, and nutrient digestibility. The potential of O. ficus-indica to adapt to cochineal stress is controlled by the macro and micro-nutrient concentration brought by the AMF association.


Asunto(s)
Biomasa , Micorrizas , Valor Nutritivo , Opuntia , Micorrizas/fisiología , Opuntia/microbiología , Animales , Suelo/química , Sequías , Agua/metabolismo
3.
BMC Plant Biol ; 24(1): 732, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085801

RESUMEN

BACKGROUND: Soybean is the main oil crop in Northeast China. Continuous monocropping is more commonly used for soybean production due to rising market demand and arable land constraints. However, autotoxic substances, such as phenolic acids, produced by continuously cropped soybean can reduce yield and quality. The mycorrhiza formed of Arbuscular mycorrhizal fungi (AMF) and plant roots regulate the metabolic activities of the host plant and increase its disease resistance. The main purpose of this study was to inhibit the production of phenolic acids and determine the adverse effects on the growth of continuous monocropping soybean by inoculating Funneliformis mosseae (F. mosseae). RESULTS: Transcriptomics results showed that the production of phenolic acids in continuous monocropping soybean roots was mainly regulated by the expression of the CHS6, PCL1, SAMT, SRG1, and ACO1 genes, and the expression of these genes was significantly downregulated after inoculation with F. mosseae. Metabolomics results showed that continuous monocropping soybean roots inoculated with F. mosseae inhibited phenolic acid production through the phenylpropane biosynthetic, α-linoleic acid, linoleic acid, and other metabolic pathways. Phenolic acids in the phenylpropane metabolic pathway, such as 4-hydroxybenzoic acid, phthalic acid, and vanillic acid, decreased significantly after inoculation with F. mosseae. The combined analysis of the two showed that genes such as YLS9 and ARF3 were positively correlated with 4-hydroxybenzoic acid and so on, while genes such as CHS6 and SRG1 were negatively correlated with butyric acid and so on. CONCLUSION: F. mosseae regulated the expression of functional genes and related phenolic acid metabolic pathways produced by continuous monocropping soybean roots, inhibiting the production of phenolic acid autotoxic substances in continuous cropped soybean, and slowing down the disturbance of continuous monocropping. This study provides a new solution for continuous monocropping of plants to overcome the autotoxicity barrier and provides a new basis for the development and utilization of AMF as a biological agent.


Asunto(s)
Glycine max , Hidroxibenzoatos , Micorrizas , Raíces de Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Hidroxibenzoatos/metabolismo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Producción de Cultivos/métodos , Regulación de la Expresión Génica de las Plantas , Hongos
4.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262953

RESUMEN

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Asunto(s)
Micorrizas , Antioxidantes , Zea mays , Carbón Orgánico , Ácido Edético , Clorofila A , Estrés Salino , Clorofila , Suelo
5.
New Phytol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169593

RESUMEN

Understanding the drivers of assemblages of arbuscular mycorrhizal fungi (AMF) is essential to leverage the benefits of AMF for plant growth and health. Arbuscular mycorrhizal fungi are heterogeneously distributed in space even at small scale. We review the role of plant distribution in driving AMF assemblages (the passenger hypothesis), using a transposition of the conceptual framework of landscape ecology. Because rooting systems correspond to habitat patches with limited carrying capacity that differ in quality due to host-preference effects, we suggest considering plant communities as mosaics of AMF microhabitats. We review how predictions from landscape ecology apply to plant community effects on AMF, and the existing evidence that tests these predictions. Although many studies have been conducted on the effect of plant compositional heterogeneity on AMF assemblages, they mostly focused on the effect of plant richness, while only a few investigated the effect of configurational heterogeneity, plant connectivity or plant community temporal dynamics. We propose key predictions and future prospects to fill these gaps. Considering plant communities as landscapes extends the passenger hypothesis by including a spatially explicit dimension and its associated ecological processes and may help understand and manipulate AMF assemblages at small spatial scales.

6.
New Phytol ; 242(2): 675-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403925

RESUMEN

Most plants form root hyphal relationships with mycorrhizal fungi, especially arbuscular mycorrhizal fungi (AMF). These associations are known to positively impact plant biomass and competitive ability. However, less is known about how mycorrhizas impact other ecological interactions, such as those mediated by pollinators. We performed a meta-regression of studies that manipulated AMF and measured traits related to pollination, including floral display size, rewards, visitation, and reproduction, extracting 63 studies with 423 effects. On average, the presence of mycorrhizas was associated with positive effects on floral traits. Specifically, we found impacts of AMF on floral display size, pollinator visitation and reproduction, and a positive but nonsignificant impact on rewards. Studies manipulating mycorrhizas with fungicide tended to report contrasting results, possibly because fungicide destroys both beneficial and pathogenic microbes. Our study highlights the potential for relationships with mycorrhizal fungi to play an important, yet underrecognized role in plant-pollinator interactions. With heightened awareness of the need for a more sustainable agricultural industry, mycorrhizal fungi may offer the opportunity to reduce reliance on inorganic fertilizers. At the same time, fungicides are now ubiquitous in agricultural systems. Our study demonstrates indirect ways in which plant-belowground fungal partnerships could manifest in plant-pollinator interactions.


Asunto(s)
Fungicidas Industriales , Micorrizas , Suelo , Plantas/microbiología , Polinización , Reproducción , Microbiología del Suelo , Hongos , Raíces de Plantas/microbiología
7.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37549338

RESUMEN

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Asunto(s)
Resistencia a la Sequía , Suelo , Raíces de Plantas , Sequías , Productos Agrícolas
8.
Int Microbiol ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129035

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.

9.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466433

RESUMEN

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Asunto(s)
Micorrizas , Rubus , Micorrizas/fisiología , Esporas Fúngicas , Plantas/microbiología , Bacterias , Clorofila , Agua
10.
Microb Ecol ; 87(1): 29, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191681

RESUMEN

The Cerrado is the most diverse tropical savanna worldwide and the second-largest biome in South America. The objective of this study was to understand the heterogeneity and dynamics of arbuscular mycorrhizal fungi (AMF) in different types of natural Cerrado vegetation and areas that are transitioning to dryer savannas or tropical rainforests and to elucidate the driving factors responsible for the differences between these ecosystems. Twenty-one natural sites were investigated, including typical Cerrado forest, typical Caatinga, Atlantic Rainforest, transitions between Cerrado and Caatinga, Cerrado areas near Caatinga or rainforest, and Carrasco sites. Spores were extracted from the soils, counted, and morphologically analyzed. In total, 82 AMF species were detected. AMF species richness varied between 36 and 51, with the highest richness found in the area transitioning between Cerrado and Caatinga, followed by areas of Cerrado close to Caatinga and typical Cerrado forest. The types of Cerrado vegetation and the areas transitioning to the Caatinga shared the highest numbers of AMF species (32-38). Vegetation, along with chemical and physical soil parameters, affected the AMF communities, which may also result from seasonal rainfall patterns. The Cerrado has a great AMF diversity and is, consequently, a natural refuge for AMF. The plant and microbial communities as well as the diversity of habitats require urgent protection within the Cerrado, as it represents a key AMF hotspot.


Asunto(s)
Microbiota , Micorrizas , Micorrizas/genética , Brasil , Bosques , Bosque Lluvioso , Suelo
11.
Ecotoxicol Environ Saf ; 269: 115783, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061081

RESUMEN

Symbiotic interactions play a vital role in maintaining the phosphate (Pi) nutrient status of host plants and providing resilience during biotic and abiotic stresses. Serendipita indica, a mycorrhiza-like fungus, supports plant growth by transporting Pi to the plant. Despite the competitive behaviour of arsenate (AsV) with Pi, the association with S. indica promotes plant growth under arsenic (As) stress by reducing As bioavailability through adsorption, accumulation, and precipitation within the fungus. However, the capacity of S. indica to enhance Pi accumulation and utilization under As stress remains unexplored. Axenic studies revealed that As supply significantly reduces intracellular ACPase activity in S. indica, while extracellular ACPase remains unaffected. Further investigations using Native PAGE and gene expression studies confirmed that intracellular ACPase (isoform2) is sensitive to As, whereas extracellular ACPase (isoform1) is As-insensitive. Biochemical analysis showed that ACPase (isoform1) has a Km of 0.5977 µM and Vmax of 0.1945 Unit/min. In hydroponically cultured tomato seedlings, simultaneous inoculation of S. indica with As on the 14thday after seed germination led to hyper-colonization, increased root/shoot length, biomass, and induction of ACPase expression and secretion under As stress. Arsenic-treated S. indica colonized groups (13.33 µM As+Si and 26.67 µM As+Si) exhibited 8.28-19.14 and 1.71-3.45-fold activation of ACPase in both rhizospheric media and root samples, respectively, thereby enhancing Pi availability in the surrounding medium under As stress. Moreover, S. indica (13.33 µM As+Si and 26.67 µM As+Si) significantly improved Pi accumulation in roots by 7.26 and 9.46 times and in shoots by 4.36 and 8.85 times compared to the control. Additionally, S. indica induced the expression of SiPT under As stress, further improving Pi mobilization. Notably, fungal colonization also restricted As mobilization from the hydroponic medium to the shoot, with a higher amount of As (191.01 ppm As in the 26.67 µM As+Si group) accumulating in the plant's roots. The study demonstrates the performance of S. indica under As stress in enhancing Pi mobilization while limiting As uptake in the host plant. These findings provide the first evidence of the As-Pi interaction in the AM-like fungus S. indica, indicating reduced As uptake and regulation of PHO genes (ACPase and SiPT genes) to increase Pi acquisition. These data also lay the foundation for the rational use of S. indica in agricultural practices.


Asunto(s)
Fosfatasa Ácida , Arsénico , Basidiomycota , Micorrizas , Arsénico/toxicidad , Arsénico/metabolismo , Basidiomycota/metabolismo , Micorrizas/fisiología , Fosfatos/farmacología , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/farmacología
12.
Mycorrhiza ; 34(4): 271-282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850289

RESUMEN

Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.


Asunto(s)
Biodiversidad , Bosques , Micorrizas , Árboles , Micorrizas/fisiología , Micorrizas/clasificación , Árboles/microbiología , Clima Tropical , Microbiología del Suelo , Nigeria
13.
Mycorrhiza ; 34(3): 181-190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630303

RESUMEN

Due to the loss of photosynthetic ability during evolution, some plant species rely on mycorrhizal fungi for their carbon source, and this nutritional strategy is known as mycoheterotrophy. Mycoheterotrophic plants forming Paris-type arbuscular mycorrhizas (AM) exhibit two distinctive mycorrhizal features: degeneration of fungal materials and specialization towards particular fungal lineages. To explore the possibility that some understory AM plants show partial mycoheterotrophy, i.e., both photosynthetic and mycoheterotrophic nutritional strategies, we investigated 13 green herbaceous plant species collected from five Japanese temperate forests. Following microscopic observation, degenerated hyphal coils were observed in four species: two Colchicaceae species, Disporum sessile and Disporum smilacinum, and two Gentianaceae species, Gentiana scabra and Swertia japonica. Through amplicon sequencing, however, we found that all examined plant species exhibited no specificity toward AM fungi. Several AM fungi were consistently found across most sites and all plant species studied. Because previous studies reported the detection of these AM fungi from various tree species in Japanese temperate forests, our findings suggest the presence of ubiquitous AM fungi in forest ecosystems. If the understory plants showing fungal degeneration exhibit partial mycoheterotrophy, they may obtain carbon compounds indirectly from a wide range of surrounding plants utilizing such ubiquitous AM fungi.


Asunto(s)
Gentianaceae , Hifa , Micorrizas , Raíces de Plantas , Micorrizas/fisiología , Raíces de Plantas/microbiología , Gentianaceae/microbiología , Japón , Bosques , Filogenia
14.
Mycorrhiza ; 34(3): 191-201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758247

RESUMEN

Arbuscular mycorrhizal fungi (AMF) colonize biochar in soils, yet the processes governing their colonization and growth in biochar are not well characterized. Biochar amendment improves soil health by increasing soil carbon, decreasing bulk density, and improving soil water retention, all of which can increase yield and alleviate environmental stress on crops. Biochar is often applied with nutrient addition, impacting mycorrhizal communities. To understand how mycorrhizas explore soils containing biochar, we buried packets of non-activated biochar in root exclusion mesh bags in contrasting agricultural soils. In this greenhouse experiment, with quinoa (Chenopodium quinoa) as the host plant, we tested impacts of mineral nutrient (as manure and fertilizer) and biochar addition on mycorrhizal colonization of biochar. Paraglomus appeared to dominate the biochar packets, and the community of AMF found in the biochar was a subset (12 of 18) of the virtual taxa detected in soil communities. We saw differences in AMF community composition between soils with different edaphic properties, and while nutrient addition shifted those communities, the shifts were inconsistent between soil types and did not significantly influence the observation that Paraglomus appeared to selectively colonize biochar. This observation may reflect differences in AMF traits, with Paraglomus previously identified only in soils (not in roots) pointing to predominately soil exploratory traits. Conversely, the absence of some AMF from the biochar implies either a reduced tendency to explore soils or an ability to avoid recalcitrant nutrient sources. Our results point to a selective colonization of biochar in agricultural soils.


Asunto(s)
Carbón Orgánico , Micorrizas , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Suelo/química , Agricultura/métodos , Chenopodium quinoa , Raíces de Plantas/microbiología , Estiércol/microbiología , Estiércol/análisis
15.
Mycorrhiza ; 34(1-2): 119-130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509266

RESUMEN

Arbuscular mycorrhizal fungi (AMF) live simultaneously inside and outside of host plant roots for a functional mycorrhizal symbiosis. Still, the year-round dynamics and relationships between soil properties and AMF communities of trees in forest ecosystems remain unclear. We collected paired root and soil samples of the same Cryptomeria japonica trees at two forest sites (five trees at each site) every 2 months over a year. Total DNA was extracted from roots and soil separately and soil physicochemical properties were measured. With Illumina's next-generation amplicon sequencing targeting the small subunit of fungal ribosomal DNA, we clarified seasonal dynamics of soil properties and AMF communities. Soil pH and total phosphorus showed significant seasonality while total carbon, nitrogen, and C/N did not. Only pH was a good predictor of the composition and dynamics of the AMF community. The total AMF community (roots + soil) showed significant seasonality because of variation from May to September. Root and soil AMF communities were steady year-round, however, with similar species richness but contained significantly different AMF assemblages in any sampling month. Despite the weak seasonality in the communities, the top two dominant OTUs showed significant but different shifts between roots and soils across seasons with strong antagonistic relationships. In conclusion, few dominant AMF taxa are dynamically shifting between the roots and soils of C. japonica to respond to seasonal and phenological variations in their microhabitats. AMF inhabiting forest ecosystems may have high environmental plasticity to sustain a functional symbiosis regardless of seasonal variations that occur in the soil.


Asunto(s)
Cryptomeria , Micorrizas , Micorrizas/genética , Suelo/química , Ecosistema , Cryptomeria/genética , Raíces de Plantas/microbiología , Microbiología del Suelo , Árboles , ADN de Hongos/genética , Hongos/genética
16.
Chem Biodivers ; 21(7): e202400208, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713365

RESUMEN

Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.


Asunto(s)
Frutas , Micorrizas , Solanum nigrum , Simbiosis , Solanum nigrum/química , Solanum nigrum/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/microbiología , Micorrizas/metabolismo , Micorrizas/química , Cromatografía de Gases y Espectrometría de Masas , Metabolismo Secundario , Glomeromycota/metabolismo , Glomeromycota/química , Glomeromycota/fisiología
17.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338472

RESUMEN

Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.


Asunto(s)
Moringa , Animales , Conejos , Moringa/metabolismo , Líquido Amniótico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas , Piel/metabolismo
18.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999186

RESUMEN

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Asunto(s)
Metabolómica , Micorrizas , Panax notoginseng , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triterpenos , Panax notoginseng/microbiología , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Micorrizas/metabolismo , Metabolómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análisis de Componente Principal , Metaboloma
19.
Environ Geochem Health ; 46(2): 41, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227068

RESUMEN

Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).


Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos Agrícolas
20.
Environ Monit Assess ; 196(7): 681, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954029

RESUMEN

This study explored whether wildfire alters the soil properties and arbuscular mycorrhizal fungi (AMF) community composition when compared with burnt rangeland, non-burnt rangeland and adjacent tilled in mesothermal ecosystems. The study was carried out in August 2020, 1 year later after wildfire. The results of this study showed that the wildfire played a key role in altering soil characteristics and AMF community composition in Bartin Province located in the Western Black Sea Region. Soil samples were made according to standard methods. AMF spores were isolated according to the wet sieving method, and the spores of AMF were identified according to their morphological characteristics. Analysis of variance was performed to determine the differences between the parameters, and correlation analysis was performed to determine the relationships between the parameters. The highest values of soil organic carbon (2.20%), total nitrogen (0.18%), K2O (74.68 kg/da), root colonization (87.5%) and the frequency of occurrence of Funneliformis geosporum (20%), Claroideoglomus claroideum (16%) and Claroideoglomus etunicatum (11%) were found in burnt rangeland. Sporulation of Acaulospora dilatata, Acaulospora morrowiae, Acaulospora tuberculata, Scutellospora castanea, Scutellospora coralloidea, Scutellospora scutata, Glomus coremioides and Glomus multicaule was either decreased or completely inhibited in the burnt rangeland. While species diversity of AMF (12) decreased, the number of AMF spores (325.6 (number/50 gr soil)) increased in burnt areas. In conclusion, the number of spores and root colonization of AMF increased but species diversity of AMF reduced after the wildfire. In ecosystems with high fire risk where AMF transfer is planned, it is suggested that it would be more appropriate to select species with an increase in spore number after fire.


Asunto(s)
Micorrizas , Microbiología del Suelo , Suelo , Incendios Forestales , Micorrizas/fisiología , Suelo/química , Monitoreo del Ambiente , Nitrógeno/análisis , Ecosistema , Carbono/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA