Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 139: 111-120, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35431138

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Proteínas Nogo/metabolismo , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
2.
Glia ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137117

RESUMEN

Alzheimer's disease (AD) is a major cause of progressive dementia characterized by memory loss and progressive neurocognitive dysfunction. However, the molecular mechanisms are not fully understood. To elucidate the molecular mechanism contributing to AD, an integrated analytical workflow was deployed to identify pivotal regulatory target within the RNA-sequencing (RNA-seq) data of the temporal cortex from AD patients. Soluble transforming growth factor beta receptor 3 (sTGFBR3) was identified as a critical target in AD, which was abnormally elevated in AD patients and AD mouse models. We then demonstrated that sTGFBR3 deficiency restored spatial learning and memory deficits in amyloid precursor protein (APP)/PS1 and streptozotocin (STZ)-induced neuronal impairment mice after its expression was disrupted by a lentiviral (LV) vector expressing shRNA. Mechanistically, sTGFBR3 deficiency augments TGF-ß signaling and suppressing the NF-κB pathway, thereby reduced the number of disease-associated microglia (DAMs), inhibited proinflammatory activity and increased the phagocytic activity of DAMs. Moreover, sTGFBR3 deficiency significantly mitigated acute neuroinflammation provoked by lipopolysaccharide (LPS) and alleviated neuronal dysfunction induced by STZ. Collectively, these results position sTGFBR3 as a promising candidate for therapeutic intervention in AD.

3.
Neurobiol Dis ; 199: 106570, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885850

RESUMEN

BACKGROUND: Hepatic lipoprotein receptor-related protein 1 (LRP-1) plays a central role in peripheral amyloid beta (Aß) clearance, but its importance in Alzheimer's disease (AD) pathology is understudied. Our previous work showed that intragastric alcohol feeding to C57BL/6 J mice reduced hepatic LRP-1 expression which correlated with significant AD-relevant brain changes. Herein, we examined the role of hepatic LRP-1 in AD pathogenesis in APP/PS1 AD mice using two approaches to modulate hepatic LRP-1, intragastric alcohol feeding to model chronic heavy drinking shown by us to reduce hepatic LRP-1, and hepato-specific LRP-1 silencing. METHODS: Eight-month-old male APP/PS1 mice were fed ethanol or control diet intragastrically for 5 weeks (n = 7-11/group). Brain and liver Aß were assessed using immunoassays. Three important mechanisms of brain amyloidosis were investigated: hepatic LRP-1 (major peripheral Aß regulator), blood-brain barrier (BBB) function (vascular Aß regulator), and microglia (major brain Aß regulator) using immunoassays. Spatial LRP-1 gene expression in the periportal versus pericentral hepatic regions was confirmed using NanoString GeoMx Digital Spatial Profiler. Further, hepatic LRP-1 was silenced by injecting LRP-1 microRNA delivered by the adeno-associated virus 8 (AAV8) and the hepato-specific thyroxine-binding globulin (TBG) promoter to 4-month-old male APP/PS1 mice (n = 6). Control male APP/PS1 mice received control AAV8 (n = 6). Spatial memory and locomotion were assessed 12 weeks after LRP-1 silencing using Y-maze and open-field test, respectively, and brain and liver Aß were measured. RESULTS: Alcohol feeding reduced plaque-associated microglia in APP/PS1 mice brains and increased aggregated Aß (p < 0.05) by ELISA and 6E10-positive Aß load by immunostaining (p < 0.05). Increased brain Aß corresponded with a significant downregulation of hepatic LRP-1 (p < 0.01) at the protein and transcript level, primarily in pericentral hepatocytes (zone 3) where alcohol-induced injury occurs. Hepato-specific LRP-1 silencing significantly increased brain Aß and locomotion hyperactivity (p < 0.05) in APP/PS1 mice. CONCLUSION: Chronic heavy alcohol intake reduced hepatic LRP-1 expression and increased brain Aß. The hepato-specific LRP-1 silencing similarly increased brain Aß which was associated with behavioral deficits in APP/PS1 mice. Collectively, our results suggest that hepatic LRP-1 is a key regulator of brain amyloidosis in alcohol-dependent AD.


Asunto(s)
Enfermedad de Alzheimer , Hígado , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Masculino , Ratones , Hígado/metabolismo , Amiloidosis/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Etanol/administración & dosificación , Modelos Animales de Enfermedad , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
Neurochem Res ; 49(10): 2888-2896, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39037560

RESUMEN

With the aging global population, Alzheimer's disease (AD) has become a significant social and economic burden, necessitating the development of novel therapeutic strategies. This study investigates the therapeutic potential of nicotinamide mononucleotide (NMN) synbiotics, a combination of NMN, Lactiplantibacillus plantarum CGMCC 1.16089, and lactulose, in mitigating AD pathology. APP/PS1 mice were supplemented with NMN synbiotics and compared against control groups. The effects on amyloid-ß (Aß) deposition, intestinal histopathology, tight junction proteins, inflammatory cytokines, and reactive oxygen species (ROS) levels were assessed. NMN synbiotics intervention significantly reduced Aß deposition in the cerebral cortex and hippocampus by 67% and 60%, respectively. It also ameliorated histopathological changes in the colon, reducing crypt depth and restoring goblet cell numbers. The expression of tight junction proteins Claudin-1 and ZO-1 was significantly upregulated, enhancing intestinal barrier integrity. Furthermore, NMN synbiotics decreased the expression of proinflammatory cytokines IL-1ß, IL-6, and TNF-α, and reduced ROS levels, indicative of attenuated oxidative stress. The reduction in Aß deposition, enhancement of intestinal barrier function, decrease in neuroinflammation, and alleviation of oxidative stress suggest that NMN synbiotics present a promising therapeutic intervention for AD by modulating multiple pathological pathways. Further research is required to elucidate the precise mechanisms, particularly the role of the NLRP3 inflammasome pathway, which may offer a novel target for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Simbióticos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Simbióticos/administración & dosificación , Mononucleótido de Nicotinamida/uso terapéutico , Mononucleótido de Nicotinamida/farmacología , Ratones Transgénicos , Ratones , Péptidos beta-Amiloides/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Masculino , Citocinas/metabolismo
5.
J Nanobiotechnology ; 22(1): 582, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304919

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS: In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aß deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION: Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Transgénicos , Probióticos , Animales , Ratones , Probióticos/farmacología , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Presenilina-1/genética , Péptidos beta-Amiloides/metabolismo , Lactobacillus plantarum
6.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918925

RESUMEN

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Ratones , Humanos , Masculino , Animales , Anciano , Lactante , Astrocitos/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
7.
J Neurosci Res ; 101(4): 524-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36583371

RESUMEN

The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-ß (Aß) transport/degradation, contributing to Aß homeostasis. Inadequate Aß metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aß scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aß uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aß-488 and uptake was evaluated at different time points using flow cytometry. Aß uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aß scavengers rhythmicity and that Aß clearance is a rhythmic process possibly regulated by the rhythmic expression of Aß scavengers.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Ratones , Animales , Lactante , Enfermedad de Alzheimer/metabolismo , Plexo Coroideo/metabolismo , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Ritmo Circadiano , Ratones Transgénicos , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad
8.
J Transl Med ; 21(1): 277, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095548

RESUMEN

BACKGROUND: Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS: The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS: Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION: These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Ratones , Animales , Farmacología en Red , ARN Ribosómico 16S , Ratones Transgénicos
9.
Neurobiol Learn Mem ; 200: 107737, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813079

RESUMEN

Although both nonrapid eye movement (NREM) sleep loss and rapid eye movement (REM) sleep loss exacerbate Alzheimer's disease (AD) progression, they exert different effects. Microglial activation can be beneficial or detrimental to AD patients under different conditions. However, few studies have investigated which sleep stage is the main regulator of microglial activation or the downstream effects of this activation. We aimed to explore the roles of different sleep phases in microglial activation and to investigate the possible effect of microglial activation on AD pathology. In this study, thirty-six 6-month-old APP/PS1 mice were equally divided into 3 groups: the stress control (SC), total sleep deprivation (TSD), and REM deprivation (RD) groups. All mice underwent a 48-hour intervention before their spatial memory was assessed using a Morris water maze (MWM). Then, microglial morphology, activation- and synapse-related protein expression, and inflammatory cytokine and amyloid ß (Aß) levels in hippocampal tissues were measured. We found that the RD and TSD groups exhibited worse spatial memory in the MWM tests. In addition, the RD and TSD groups showed greater microglial activation, higher inflammatory cytokine levels, lower synapse-related protein expression and more severe Aß accumulation than the SC group, but there were no significant differences between the RD and TSD groups. This study demonstrates that disturbance of REM sleep may activate microglia in APP/PS1 mice. These activated microglia may promote neuroinflammation and engulf synapses but show a weakened ability to clear plaques.


Asunto(s)
Microglía , Privación de Sueño , Sueño REM , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Presenilina-1/genética , Privación de Sueño/complicaciones , Privación de Sueño/genética , Privación de Sueño/metabolismo
10.
Behav Brain Funct ; 19(1): 7, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055801

RESUMEN

Increasing evidence has shown that the NOD-like receptor protein 1 (NLRP1) inflammasome is associated with Aß generation and deposition, which contributes to neuronal damage and neuronal-inflammation in Alzheimer's disease (AD). However, the specific mechanism of NLRP1 inflammasome in the pathogenesis of AD is still unclear. It has been reported that autophagy dysfunction can aggravate the pathological symptoms of AD and plays an important role in regulating Aß generation and clearance. We hypothesized that NLRP1 inflammasome activation may induce autophagy dysfunction contributing to the progression of AD. In the present study, we observed the relationship between Aß generation and NLRP1 inflammasome activation, as well as AMPK/mTOR mediated-autophagy dysfunction in WT 9-month-old (M) mice, APP/PS1 6 M and APP/PS1 9 M mice. Additionally, we further studied the effect of NLRP1 knockdown on cognitive function, Aß generation, neuroinflammation and AMPK/mTOR mediated autophagy in APP/PS1 9 M mice. Our results indicated that NLRP1 inflammasome activation and AMPK/mTOR mediated-autophagy dysfunction are closely implicated in Aß generation and deposition in APP/PS1 9 M mice, but not in APP/PS1 6 M mice. Meanwhile, we found that knockdown of NLRP1 significantly improved learning and memory impairments, decreased the expressions of NLRP1, ASC, caspase-1, p-NF-κB, IL-1ß, APP, CTF-ß, BACE1 and Aß1-42, and decreased the level of p-AMPK, Beclin 1 and LC3 II, and increased the level of p-mTOR and P62 in APP/PS1 9 M mice. Our study suggested that inhibition of NLRP1 inflammasome activation improves AMPK/mTOR mediated-autophagy dysfunction, resulting in the decrease of Aß generation, and NLRP1 and autophagy might be important targets to delay the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacología , Inflamasomas/metabolismo , Inflamasomas/farmacología , Secretasas de la Proteína Precursora del Amiloide/farmacología , Proteínas NLR , Proteínas Quinasas Activadas por AMP/farmacología , Ratones Transgénicos , Ácido Aspártico Endopeptidasas/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Modelos Animales de Enfermedad
11.
Nutr Neurosci ; 26(12): 1243-1257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370050

RESUMEN

The seed embryo of Nelumbo nucifera Gaertn. is a famous traditional Chinese medicine and food which is considered conducive to the prevention of Alzheimer's disease (AD). In this study, the effect and mechanism of TASENN (total alkaloids from the seed embryo of Nelumbo nucifera Gaertn.) on AD mice and amyloid-ß (Aß) injured PC12 cells were evaluated. HPLC-UV analysis showed that the extracted TASENN (purity = 95.6%) mainly contains Liensinine, Isoliensinine, and Neferine (purity was 23.01, 28.02, and 44.57%, respectively). In vivo, oral treatment with TASENN (50 mg/kg/day for 28 days) improved the learning and memory functions of APP/PS1 transgenic mice, ameliorated the histopathological changes of cortical and hippocampal neurons, and inhibited neuronal apoptosis. We found that TASENN reduced the phosphorylation of Tau and the formation of neurofibrillary tangles (NFTs) in APP/PS1 mouse brain. Moreover, TASENN down-regulated the expression of APP and BACE1, ameliorated Aß deposition, and inhibited microglial proliferation and aggregation. The elevated protein expression of CaM and p-CaMKII in APP/PS1 mouse brain was also reduced by TASENN. In vitro, TASENN inhibited the apoptosis of PC12 cells injured by Aß25-35 and increased the cell viability. Aß25-35-induced increase of cytosolic free Ca2+ level and high expression of CaM, p-CaMKII, and p-Tau were decreased by TASENN. Our findings indicate that TASENN has a potential therapeutic effect on AD mice and a protective effect on PC12 cells. The anti-AD activity of TASENN may be closely related to its negative regulation of the CaM pathway.


Asunto(s)
Alcaloides , Enfermedad de Alzheimer , Disfunción Cognitiva , Nelumbo , Ratones , Animales , Ratas , Nelumbo/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/uso terapéutico , Células PC12 , Ácido Aspártico Endopeptidasas/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Alcaloides/uso terapéutico , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética
12.
Sleep Breath ; 27(4): 1495-1504, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36205809

RESUMEN

PURPOSE: Sleep disturbances exacerbate the progression of Alzheimer's disease (AD), but disturbances of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep may have different effects. Neurofilament light chain (NfL), an axon-specific protein, is an indicator of the severity of neuronal apoptosis. To investigate whether or not NREM or REM sleep is crucial to neuronal survival, we examined the effects of induced NREM or REM sleep loss on NfL levels in APP/PS1 mice, a model of AD, and their wild-type (WT) C57BL/6 J littermates. METHODS: At 6 months of age, WT mice and AD mice were equally divided into six groups, namely, the WT-normal sleep (S), WT-total sleep deprivation (TSD), WT-REM deprivation (RD), AD-S, AD-TSD and AD-RD groups, according to the type of sleep intervention applied. All mice underwent 6 days of sleep intervention. Cerebrospinal fluid (CSF) and plasma NfL levels were measured at baseline and on days 2, 4 and 6, and spatial memory was assessed in the Morris water maze (MWM) test. RESULTS: Among the 18 WT and 18 AD mice, CSF and plasma NfL levels were higher in AD-TSD mice than in AD-S or AD-RD mice, while no significant difference was observed between the latter two groups. In AD-TSD mice, CSF and plasma NfL levels increased with the duration of sleep deprivation. A similar pattern of results was observed for the WT groups. CONCLUSIONS: NREM sleep loss may increase CSF and plasma NfL levels in both WT and AD mice.


Asunto(s)
Enfermedad de Alzheimer , Privación de Sueño , Ratones , Animales , Filamentos Intermedios , Ratones Endogámicos C57BL , Sueño/fisiología
13.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108131

RESUMEN

Alzheimer's disease (AD), which predominantly affects women, involves at its onset a metabolic deregulation associated with a synaptic failure. Here, we performed a behavioral, neurophysiological and neurochemical characterization of 9-month-old female APPswe/PS1dE9 (APP/PS1) mice as a model of early AD. These animals showed learning and memory deficits in the Morris water maze, increased thigmotaxis and anxiety-like behavior and showed signs of fear generalization. Long-term potentiation (LTP) was decreased in the prefrontal cortex (PFC), but not in the CA1 hippocampus or amygdala. This was associated with a decreased density of sirtuin-1 in cerebrocortical synaptosomes and a decreased density of sirtuin-1 and sestrin-2 in total cerebrocortical extracts, without alterations of sirtuin-3 levels or of synaptic markers (syntaxin, synaptophysin, SNAP25, PSD95). However, activation of sirtuin-1 did not affect or recover PFC-LTP deficit in APP/PS1 female mice; instead, inhibition of sirtuin-1 increased PFC-LTP magnitude. It is concluded that mood and memory dysfunction in 9-month-old female APP/PS1 mice is associated with a parallel decrease in synaptic plasticity and in synaptic sirtuin-1 levels in the prefrontal cortex, although sirtiun1 activation failed to restore abnormal cortical plasticity.


Asunto(s)
Enfermedad de Alzheimer , Corteza Prefrontal , Sirtuina 1 , Animales , Femenino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto , Ratones Transgénicos , Corteza Prefrontal/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
14.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175445

RESUMEN

Stem-cell-based therapy is very promising for Alzheimer's disease (AD), yet has not become a reality. A critical challenge is the transplantation microenvironment, which impacts the therapeutic effect of stem cells. In AD brains, amyloid-beta (Aß) peptides and inflammatory cytokines continuously poison the tissue microenvironment, leading to low survival of grafted cells and restricted efficacy. It is necessary to create a growth-supporting microenvironment for transplanted cells. Recent advances in AD studies suggest that the asparaginyl endopeptidase (AEP) is a potential intervention target for modifying pathological changes. We here chose APP/PS1 mice as an AD model and employed pharmacological inhibition of the AEP for one month to improve the brain microenvironment. Thereafter, we transplanted neural stem cells (NSCs) into the hippocampus and maintained therapy for one more month. We found that inhibition of AEPs resulted in a significant decrease of Aß, TNF-α, IL-6 and IL-1ß in their brains. In AD mice receiving NSC transplantation alone, the survival of NSCs was at a low level, while in combination with AEP inhibition pre-treatment the survival rate of engrafted cells was doubled. Within the 2-month treatment period, implantation of NSCs plus pre-inhibition of the AEP significantly enhanced neural plasticity of the hippocampus and rescued cognitive impairment. Neither NSC transplantation alone nor AEP inhibition alone achieved significant efficacy. In conclusion, pharmacological inhibition of the AEP ameliorated brain microenvironment of AD mice, and thus improved the survival and therapeutic efficacy of transplanted stem cells.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Animales , Ratones , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Cisteína Endopeptidasas , Modelos Animales de Enfermedad , Ratones Transgénicos , Inhibidores de Cisteína Proteinasa
15.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677642

RESUMEN

As aging progresses, ß-amyloid (Aß) deposition and the resulting oxidative damage are key causes of aging diseases such as senior osteoporosis (SOP). Humulus lupulus L. (hops) is an important medicinal plant widely used in the food, beverage and pharmaceutical industries due to its strong antioxidant ability. In this study, APP/PS1 mutated transgenic mice and Aß-injured osteoblasts were used to evaluate the protective effects of hops extracts (HLE) on SOP. Mice learning and memory levels were assessed by the Morris water maze. Mice femurs were prepared for bone micro-structures and immunohistochemistry experiments. The deposition of Aß in the hippocampus, cortex and femurs were determined by Congo red staining. Moreover, protein expressions related to antioxidant pathways were evaluated by Western blotting. It was found that HLE markedly improved learning abilities and ameliorated memory impairment of APP/PS1 mice, as well as regulated antioxidant enzymes and bone metabolism proteins in mice serum. Micro-CT tests indicated that HLE enhanced BMD and improved micro-architectural parameters of mice femur. More importantly, it was discovered that HLE significantly reduced Aß deposition both in the brain and femur. Further in vitro results showed HLE increased the bone mineralization nodule and reduced the ROS level of Aß-injured osteoblasts. Additionally, HLE increased the expression of antioxidant related proteins Nrf2, HO-1, NQO1, FoxO1 and SOD-2. These results indicated that Humulus lupulus L. extract could protect against senior osteoporosis through inhibiting Aß deposition and oxidative stress, which provides a reference for the clinical application of hops in the prevention and treatment of SOP.


Asunto(s)
Enfermedad de Alzheimer , Humulus , Osteoporosis , Extractos Vegetales , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Humulus/química , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Estrés Oxidativo , Presenilina-1/genética , Presenilina-1/metabolismo , Extractos Vegetales/farmacología
16.
Neurobiol Dis ; 174: 105876, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162737

RESUMEN

Alzheimer's disease (AD) is a progressive devastating neurodegenerative disorder characterized by extracellular amyloid beta (Aß42) plaque formation, hyperphosphorylation of tau protein leading to intracellular neurofibrillary tangle formation. Recently discovered hallmark features responsible for AD pathogenesis are neuronal insulin resistance, dysregulation in adiponectin and AMPK signaling. The presence of adiponectin and its receptor in the brain with its unique anti-diabetic effects and association with neurodegenerative diseases has raised our interest in exploring orally active small molecule adiponectin receptor agonist, AdipoRon. To date, all the available drugs for the treatment of AD provides symptomatic relief and do not stall the progression of the disease. Indeed, it is becoming increasingly apparent to find appropriate targets. Here, we attempt to shed lights on adiponectin receptor agonist, AdipoRon and its downstream molecular targets in reducing disease pathogenesis and insulin resistance. In brain, AdipoRon induced AMPK activation, increased insulin sensitivity, reduced amyloid beta plaque deposition and improved cognitive impairment. Levels of BACE were also downregulated while LDLR, APOE and neprilysin were upregulated promoting amyloid beta clearance from brain. AdipoRon further reduced the chronic inflammatory marker, GFAP and improved synaptic markers PSD-95 and synaptophysin in APP/PS1 mice. Our in-vitro studies further confirmed the potential role of AdipoRon in improving insulin sensitivity by increasing GLUT 4 translocation, glucose uptake and insulin signaling under hyperinsulinemic condition. Our findings suggest that AdipoRon could be a promising lead in the future treatment strategies in the development of effective AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Resistencia a la Insulina , Animales , Ratones , Adiponectina , Enfermedad de Alzheimer/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Insulina , Ratones Transgénicos , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapéutico
17.
Neuroimmunomodulation ; 29(1): 36-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34256371

RESUMEN

INTRODUCTION: Physical exercise is an important component of managing Alzheimer's disease (AD). miRNAs can be modulated by exercise intervention. OBJECTIVE: The study explored the involvement and potential mechanism of miR-192-5p in the protective effect of physical exercise on AD. METHODS: Ninety AD patients were enrolled, in which 45 cases accepted cycling training for continuous 3 months. The expression changes of miR-192-5p before and after exercise were analyzed by reverse transcription-quantitative PCR. 8-month-old APP/PS1 double Tg mice were used as the AD animal model. Mice in the voluntary exercise (VE) group received VE for 4 weeks. Morris water maze (MWM) test was used to evaluate the learning and memory function. Enzyme-linked immunosorbent assay was used to calculate the level of IL-1ß, IL-6, and TNF-α. RESULTS: AD patients showed elevated MMSE scores, decreased ADAS-cog and NPI-Q scores after 3 months of exercise. miR-192-5p was downregulated in the serum of AD patients and correlated with the levels of MMSE score, ADAS-cog, and NPI-Q score. A positive association was detected between serum miR-192-5p with TNF-α, IL-6, and IL-1ß levels. MiR-192-5p is downregulated in the hippocampus tissues of mice after VE. Overexpression of miR-192-5p reversed the neuroprotective effect of exercise on AD in mice and promoted the inflammatory response of AD mice. CONCLUSION: MiR-192-5p can be modulated by the exercise intervention and involved in the protective effect of exercise on AD.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo
18.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142277

RESUMEN

Neurogenesis plays a crucial role in cognitive processes. During aging and in Alzheimer's disease (AD), altered neurogenesis and neuroinflammation are evident both in C57BL/6J, APPSwe/PS1dE9 (Tg) mice and humans. AD pathology may slow down upon drug treatment, for example, in a previous study of our group P33, a putative neuroprotective agent was found to exert advantageous effects on the elevated levels of APP, Aß, and neuroinflammation. In the present study, we aimed to examine longitudinal alterations in neurogenesis, neuroinflammation and AD pathology in a transgenic (Tg) mouse model, and assessed the putative beneficial effects of long-term P33 treatment on AD-specific neurological alterations. Hippocampal cell proliferation and differentiation were significantly reduced between 8 and 12 months of age. Regarding neuroinflammation, significantly elevated astrogliosis and microglial activation were observed in 6- to 7-month-old Tg animals. The amounts of the molecules involved in the amyloidogenic pathway were altered from 4 months of age in Tg animals. P33-treatment led to significantly increased neurogenesis in 9-month-old animals. Our data support the hypothesis that altered neurogenesis may be a consequence of AD pathology. Based on our findings in the transgenic animal model, early pharmacological treatment before the manifestation of AD symptoms might ameliorate neurological decline.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Lactante , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Presenilina-1/genética , Presenilina-1/metabolismo
19.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806318

RESUMEN

Increasing evidence implicates endothelial dysfunction in the pathogenesis of Alzheimer's disease (AD). Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is essential in maintaining cerebrovascular function and can modulate the production and clearance of amyloid beta (Aß). APPswe/PSdE1 (APP/PS1) mice display age-related Aß accumulation and memory deficits. In order to make the model more clinically relevant with an element of endothelial dysfunction, we generated APP/PS1/eNOS+/- mice by crossing complete eNOS deficient (eNOS-/-) mice and APP/PS1 mice. APP/PS1/eNOS+/- mice at 8 months of age displayed a more severe spatial working memory deficit relative to age-matched APP/PS1 mice. Moreover, immunohistochemistry and immunoblotting revealed significantly increased Aß plaque load in the brains of APP/PS1/eNOS+/- mice, concomitant with upregulated BACE-1 (hence increased Aß production), downregulated insulin-degrading enzyme (hence reduced Aß clearance) and increased immunoreactivity and expression of microglia. The present study, for the first time, demonstrated that partial eNOS deficiency exacerbated behavioral dysfunction, Aß brain deposition, and microglial pathology in APP/PS1 mice, further implicating endothelial dysfunction in the pathogenesis of AD. The present findings also provide the scientific basis for developing preventive and/or therapeutic strategies by targeting endothelial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Óxido Nítrico Sintasa de Tipo III , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Disfunción Cognitiva/enzimología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Placa Amiloide/metabolismo , Presenilina-1/metabolismo
20.
J Cell Mol Med ; 25(22): 10698-10710, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34708522

RESUMEN

We examined the mechanism by which lithium chloride (LiCl) attenuates the impaired learning capability and memory function of dual-transgenic APP/PS1 mice. Six- or 12-month-old APP/PS1 and wild-type (WT) mice were randomized into four groups, namely WT, WT+Li (100 mg LiCl/kg body weight, gavage once daily), APP/PS1 and APP/PS1+Li. Primary rat hippocampal neurons were exposed to ß-amyloid peptide oligomers (AßOs), LiCl and/or XAV939 (inhibitor of Wnt/ß-catenin) or transfected with small interfering RNA against the ß-catenin gene. In the cerebral zone of APP/PS1 mice, the level of Aß was increased and those of α7 nicotinic acetylcholine receptors (nAChR), phosphor-GSK3ß (ser9), ß-catenin and cyclin D1 (protein and/or mRNA levels) reduced. Two-month treatment with LiCl at ages of 4 or 10 months weakened all of these effects. Similar expression variations were observed for these proteins in primary neurons exposed to AßOs, and these effects were attenuated by LiCl and aggravated by XAV939. Inhibition of ß-catenin expression lowered the level of α7 nAChR protein in these cells. LiCl attenuates the impaired learning capability and memory function of APP/PS1 mice via a mechanism that might involve elevation of the level of α7 nAChR as a result of altered Wnt/ß-catenin signalling.


Asunto(s)
Aprendizaje/efectos de los fármacos , Cloruro de Litio/farmacología , Memoria/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Conducta Animal , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Ratones Transgénicos , Fenotipo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA