Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37709555

RESUMEN

Electron transport chain (ETC) disorders are a group of rare, multisystem diseases caused by impaired oxidative phosphorylation and energy production. Deficiencies in complex III (CIII), also known as ubiquinol-cytochrome c reductase, are particularly rare in humans. Ubiquinol-cytochrome c reductase core protein 2 (UQCRC2) encodes a subunit of CIII that plays a crucial role in dimerization. Several pathogenic UQCRC2 variants have been identified in patients presenting with metabolic abnormalities that include lactic acidosis, hyperammonemia, hypoglycemia, and organic aciduria. Almost all previously reported UQCRC2-deficient patients exhibited neurodevelopmental involvement, including developmental delays and structural brain anomalies. Here, we describe a girl who presented at 3 yr of age with lactic acidosis, hyperammonemia, and hypoglycemia but has not shown any evidence of neurodevelopmental dysfunction by age 15. Whole-exome sequencing revealed compound heterozygosity for two novel variants in UQCRC2: c.1189G>A; p.Gly397Arg and c.437T>C; p.Phe146Ser. Here, we discuss the patient's clinical presentation and the likely pathogenicity of these two missense variants.


Asunto(s)
Acidosis Láctica , Hiperamonemia , Hipoglucemia , Humanos , Femenino , Adolescente , Complejo III de Transporte de Electrones , Mutación Missense
2.
Neurosci Lett ; 686: 80-86, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195972

RESUMEN

It was established in experiments on cell cultures of neurons and astrocytes that ammonium ions at concentrations of 4-8 mM cause hyperexcitation of the neuronal network, as a result of which there is a disturbance of calcium homeostasis, which can lead to the death of neurons. In the present study, we investigated the effect of toxic doses of ammonium (8 mM NH4Cl) on the activity of NMDA and AMPA receptors and the role of these receptors in spontaneous synchronous activity (SSA). In a control experiment in the absence of NH4Cl, SSA is not suppressed by NMDA receptor inhibitors, but is suppressed by AMPA receptor antagonists. In the presence of toxic doses of NH4Cl, SSA is completely inhibited by NMDA receptor inhibitors in 63% of neurons and by AMPA receptor inhibitors in 33% of neurons. After short-term applications of toxic doses of ammonium, the amplitude of the Ca2+ response to 10 µM NMDA increases, and decreases in response to 500 nM FW (agonist of AMPA receptors). NMDA receptor blocker MK-801 (20 µM), competitive antagonist D-AP5 (10 µM) and competitive AMPA receptor antagonist NBQX (2 µM) abolished the activating ammonium mediated effect on the NMDA receptors while only MK-801, but not NBQX, abolished the inhibiting ammonium mediated effect on AMPA receptors. These data indicate that under acute hyperammonemia, the activity of NMDA receptors increases, while the activity of AMPA receptors decreases. This phenomenon could explain such a wide range of toxic effects of ammonium ions mediated by NMDA receptors.


Asunto(s)
Astrocitos/efectos de los fármacos , Hiperamonemia/metabolismo , Neuronas/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Hiperamonemia/inducido químicamente , N-Metilaspartato/farmacología , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA