Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurobiol Dis ; 187: 106308, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741513

RESUMEN

Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.

2.
Acta Neuropathol ; 146(5): 685-705, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740734

RESUMEN

Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Humanos , Animales , Ratones , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Ratones Endogámicos C57BL , Mutagénesis , ADN
3.
Bioorg Med Chem ; 78: 117147, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587551

RESUMEN

The naturally-occurring di-catechol lignan nordihydroguaiaretic acid (NDGA) and an analog without methyl groups on the butyl linker both undergo intramolecular cyclization at pH 7.4 to form dibenzocyclooctadienes. Both NDGA and these dibenzocyclooctadienes have been shown to prevent in vitro aggregation of α-synuclein, an intrinsically disordered protein associated with Parkinson's disease. NDGA possesses two vicinal methyl groups on the butyl linker and the presence of these methyl groups attenuates the rate of intramolecular cyclization versus the unsubstituted analog, in opposition to the anticipated Thorpe-Ingold effect, likely due to steric repulsions during cyclization. Numerous 1,2-bis-ethane di-catechols are known to inhibit α-synuclein aggregation in vitro and we hypothesize that these compounds undergo a similar intramolecular cyclization and the cyclized products may be responsible for the activity. To test this hypothesis we prepared a series of 1,2-bis-ethane di-catechols with 0, 2 and 4 methyl substituents on the linker. We have confirmed that these compounds undergo intramolecular cyclization to form dibenzocyclohexadienes and that steric interactions between the methyl substituents leads to an increase in the rate of intramolecular cyclization, which is in contrast to what was observed for lignan di-catechols. The rate of cyclization to form six-membered rings is 10-30 times more rapid than formation of eight membered rings and the dibenzocyclohexadienes also prevent in vitro aggregation of α-synuclein.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Masoprocol/metabolismo , Masoprocol/farmacología , Catecoles/química , Ciclización
4.
Cerebellum ; 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35657577

RESUMEN

Intracellular deposits rich in aggregated alpha-synuclein that appear within the central nervous system are intimately associated to Parkinson's disease and multiple system atrophy. While it is understandable that the aggregation of proteins, which share no primary structure identity, such as alpha-synuclein and tau protein, leads to different diseases, that of a given protein yielding distinct pathologies is counterintuitive. This short review relates molecular and mechanistic processes to the observed pathological diversity associated to alpha-synuclein aggregation.

5.
Acta Neuropathol ; 140(6): 831-849, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33021680

RESUMEN

Alpha-synuclein (αSyn) preformed fibrils (PFF) induce endogenous αSyn aggregation leading to reduced synaptic transmission. Neuronal activity modulates release of αSyn; however, whether neuronal activity regulates the spreading of αSyn pathology remains elusive. Here, we established a hippocampal slice culture system from wild-type (WT) mice and found that both Ca2+ influx and the uptake of αSyn PFF were higher in the CA3 than in the CA1 sub-region. Pharmacologically enhancing neuronal activity substantially increased αSyn pathology in αSyn PFF-treated hippocampal or midbrain slice cultures and accelerated dopaminergic neuron degeneration. Consistently, neuronal hyperactivity promoted PFF trafficking along axons/dendrites within microfluidic chambers. Unexpectedly, enhancing neuronal activity in LRRK2 G2019S mutant slice cultures further increased αSyn pathology, especially with more Lewy body (LB) forming than in WT slice cultures. Finally, following injection of αSyn PFF and chemogenetic modulators into the dorsal striatum of WT mice, both motor behavior and αSyn pathology were exacerbated likely by enhancing neuronal activity, since they were ameliorated by reducing neuronal activity. Thus, a greater understanding of the impact of neuronal activity on αSyn aggregation and spreading, as well as dopaminergic neuronal vulnerability, may provide new therapeutic strategies for patients with LB disease (LBD).


Asunto(s)
Encéfalo/patología , Degeneración Nerviosa/patología , Neuronas/fisiología , Sinucleinopatías/patología , alfa-Sinucleína/metabolismo , Animales , Axones/patología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad por Cuerpos de Lewy/patología , Ratones , Sinucleinopatías/metabolismo
6.
Pathol Res Pract ; 261: 155511, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39094523

RESUMEN

Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.

7.
Med Chem ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464835

RESUMEN

Dementia with Lewy Bodies is a neurodegenerative disorder characterised by abnormal α-Synuclein aggregate accumulation in Lewy Bodies and Lewy Neurites and the most common form of dementia after Alzheimer's disease. The presynaptic protein alpha-synuclein (α-Syn) regulates synaptic vesicle trafficking and the subsequent release of neurotransmitters in the brain. These aggregates go through a number of crucial stages, such as aggregation, oligomerization, and fibrillation. Treatment of this disorder is generally symptomatic. This necessitates the development of cutting-edge therapeutic approaches that can either stop or change the course of the diseases. Many studies have shown that α-synuclein is a significant therapeutic target and that inhibiting α-synuclein aggregation, oligomerization, and fibrillation is an important disease-modifying strategy. Since α-syn is a defining feature of Parkinson's disease, the current review provides an overview of plant phytochemicals and synthetic heterocyclic compounds that target α-syn in Parkinson's disease in order to develop new drugs for Dementia with Lewy Bodies.

8.
Neural Regen Res ; 14(2): 319-327, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30531016

RESUMEN

Methamphetamine is an amphetamine-type psychostimulant that can damage dopaminergic neurons and cause characteristic pathological changes similar to neurodegenerative diseases such as Parkinson's disease. However, its specific mechanism of action is still unclear. In the present study, we established a Parkinson's disease pathology model by exposing SH-SY5Y cells and C57BL/6J mice to methamphetamine. In vitro experiments were performed with 0, 0.5, 1.0, 1.5, 2.0 or 2.5 mM methamphetamine for 24 hours or 2.0 mM methamphetamine for 0-, 2-, 4-, 8-, 16-, and 24-hour culture of SH-SY5Y cells. Additional experimental groups of SH-SY5Y cells were administered a nitric oxide inhibitor, 0.1 mM N-nitro-L-arginine, 1 hour before exposure to 2.0 mM methamphetamine for 24 hours. In vivo experiments: C57BL/6J mice were intraperitoneally injected with N-nitro-L-arginine (8 mg/kg), eight times, at intervals of 12 hours. Methamphetamine 15 mg/kg was intraperitoneally injected eight times, at intervals of 12 hours, but 0.5-hour after each N-nitro-L-arginine injection in the combined group. Western blot assay was used to determine the expression of nitric oxide synthase, α-synuclein (α-Syn), 5G4, nitrated α-synuclein at the residue Tyr39 (nT39 α-Syn), cleaved caspase-3, and cleaved poly ADP-ribose polymerase (PARP) in cells and mouse brain tissue. Immunofluorescence staining was conducted to measure the positive reaction of NeuN, nT39 α-Syn and 5G4. Enzyme linked immunosorbent assay was performed to determine the dopamine levels in the mouse brain. After methamphetamine exposure, α-Syn expression increased; the aggregation of α-Syn 5G4 increased; nT39 α-Syn, nitric oxide synthase, cleaved caspase-3, and cleaved PARP expression increased in the cultures of SH-SY5Y cells and in the brains of C57BL/6J mice; and dopamine levels were reduced in the mouse brain. These changes were markedly reduced when N-nitro-L-arginine was administered with methamphetamine in both SH-SY5Y cells and C57BL/6J mice. These results suggest that nT39 α-Syn aggregation is involved in methamphetamine neurotoxicity.

9.
Neurosci Lett ; 636: 70-76, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27780739

RESUMEN

Alpha-synuclein oligomerization plays a key role in the development of Parkinson's disease (PD). Being the most common genetic contributor to PD, glucocerebrosidase 1 (GBA) mutations have been associated with decreased GBA enzymatic activity in PD patients with mutations in the GBA gene (GBA-PD). However, it is unknown whether the activities of other lysosomal hydrolases are being altered in GBA-PD patients and are accompanied by an increase in alpha-synuclein oligomerization. The aim of our study was to estimate GBA enzymatic activity as well as the activities of five other lysosomal hydrolases (galactocerebrosidase, alpha-glucosidase, alpha-galactosidase, sphingomyelinase, alpha-iduronidase) in dried blood spots with assessing plasma oligomeric alpha-synuclein levels in sporadic PD (sPD) patients, in GBA-PD patients and in controls. GBA enzymatic activity and plasma oligomeric alpha-synuclein levels were assessed in sPD patients (N=84), in GBA-PD patients (N=21) and controls (N=62) by LC-MS/MS and ELISA methods accordingly. GBA-PD patients showed lower GBA enzymatic activity compared to controls (p=0.001) and to sPD (p=0.0001). We also found the reduction of GLA enzymatic activity (but not of other lysosomal hydrolases) in GBA-PD (p=0.001). At the same time plasma oligomeric alpha-synuclein levels were increased in GBA-PD group compared to sPD and controls (p=0.002 and p<0.0001, respectively). Our results suggest that the decrease in enzymatic activity of lysosomal hydrolases in GBA mutation carriers may contribute to PD pathogenesis by increasing the level of neurotoxic oligomeric alpha-synuclein species.


Asunto(s)
Glucosilceramidasa/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/sangre , Anciano , Estudios de Casos y Controles , Femenino , Glucosilceramidasa/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Agregado de Proteínas
10.
Neurosci Lett ; 636: 83-89, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818354

RESUMEN

Lewy bodies, the histopathological hallmarks of Parkinson's disease (PD), contain insoluble and aggregated α-synuclein (aSyn) and many other proteins, proposing a role for failure in protein degradation system in the PD pathogenesis. Proteasomal dysfunction has indeed been linked to PD and aSyn oligomers have been shown to inhibit proteasomes and autophagy. Our recent studies have shown that inhibitors of prolyl oligopeptidase (PREP) can prevent the aggregation and enhance the clearance of accumulated aSyn, and therefore, we wanted to study if PREP inhibition can overcome the aSyn aggregation and toxicity induced by lactacystin, a proteasomal inhibitor. The cells overexpressing human A30P or A53T mutated aSyn were incubated with lactacystin and a PREP inhibitor, KYP-2047, for 48h. Theafter, the cells were fractioned, and the effects of lactacystin with/without 1µM KYP-2047 on aSyn aggregation and ubiquitin accumulation, cell viability and on autophagic markers (p62, Beclin1 and LC3BII) were studied. We found that KYP-2047 attenuated lactacystin-induced cell death in mutant aSyn overexpressing cells but not in non-overexpressing control cells. KYP-2047 reduced significantly SDS-insoluble high-molecular-weight aSyn oligomers that were in line with the cell viability results. In addition, significant reduction in protein accumulation marker, p62, was seen in SDS fraction while LC3BII, a marker for autophagosome formation, was increased, indicating to enhanced autophagy. Our results further streghten the possibilities for PREP inhibitors as a potential drug therapy against synucleinopathies and other protein aggregating diseases.


Asunto(s)
Acetilcisteína/análogos & derivados , Prolina/análogos & derivados , Inhibidores de Proteasoma/toxicidad , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , alfa-Sinucleína/metabolismo , Acetilcisteína/toxicidad , Autofagia , Línea Celular Tumoral , Supervivencia Celular , Humanos , Mutación , Prolina/farmacología , Prolil Oligopeptidasas , Agregado de Proteínas , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA