Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Genet ; 86(4): 367-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24117009

RESUMEN

Aminoacylase 1 (ACY1) deficiency is a rare inborn error of metabolism of which less than 20 observations have been described. Patients exhibit urinary excretion of specific N-acetyl amino acids and manifest a heterogeneous clinical spectrum including intellectual disability, motor delay, seizures, moderate to severe mental retardation, absent speech, growth delay, muscular hypotonia and autistic features. Here, we report the case of ACY1 enzyme deficiency in a 6-year-old girl presenting severe intellectual disability, motor retardation, absence of spontaneous locomotor activity and severe speech delay. Urinary excretion of N-acetylated amino acids was present. Mutational analysis of ACY1 gene identified the new homozygous c.1001_1001+5del6 mutation, which alters the mRNA transcription leading to exon 13 skipping and inclusion of a premature stop codon (p.Lys308Glufs*7). A quantitative fluorescent multiplex-polymerase chain reaction (QFM-PCR) assay has been set up and confirmed homozygosity of the mutation in the patient's DNA. Biochemical analysis showed absence of ACY1 enzyme activity in the patient's fibroblasts. The structure of the mutated protein has been defined by homology modeling (HM). Our data endorse the hypothesis of a link between this inborn error of metabolism and the neurological manifestations observed in patients with ACY1 deficiency.


Asunto(s)
Amidohidrolasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Exones/genética , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Niño , Femenino , Fibroblastos/metabolismo , Humanos , ARN Mensajero/biosíntesis , ARN Mensajero/genética
2.
Ir J Med Sci ; 193(1): 449-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37523070

RESUMEN

BACKGROUND: Aminoacylase-1 deficiency (ACY1D) is an autosomal recessive rare inborn error of metabolism, which is caused by disease-causing variants in the ACY1. This disorder is characterized by increased urinary excretion of specific N-acetyl amino acids. Affected individuals demonstrate heterogeneous clinical manifestations which are primarily neurologic problems. In neuroimaging, corpus callosum hypoplasia, cerebellar vermis atrophy, and delayed myelination of cerebral white matter have been reported. AIMS: Finding disease-causing variant and expanding imaging findings in a patient with persistent basal ganglia involvement. METHODS: Whole-exome sequencing was performed in order to identify disease-causing variants in an affected 5-year-old male patient who presented with neurologic regression superimposed on neurodevelopmental delay following a febrile illness. He had inability to walk, cognitive impairment, speech delay, febrile-induced seizures, truncal hypotonia, moderate to severe generalized dystonia, and recurrent metabolic decompensation. RESULTS: All metabolic tests were normal except for a moderate metabolic acidosis following febrile illnesses. The results of serial brain magnetic resonance imaging (MRI) at ages 1 and 4.5 years revealed persistent bilateral and symmetric abnormal signals in basal ganglia mainly caudate and globus pallidus nuclei with progression over time in addition to a mild supratentorial atrophy. A homozygous missense variant [NM_000666.3: c.1057C>T; p.(Arg353Cys)] was identified in the ACY1, consistent with aminoacylase-1 deficiency. Variant confirmation in patient and segregation analysis in his family were performed using Sanger sequencing. CONCLUSIONS: Our findings expanded the phenotype spectrum of ACY1-related neurodegeneration by demonstrating persistent basal ganglia involvement and moderate to severe generalized dystonia.


Asunto(s)
Amidohidrolasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Distonía , Masculino , Humanos , Preescolar , Distonía/metabolismo , Distonía/patología , Mutación , Ganglios Basales/metabolismo , Ganglios Basales/patología , Atrofia/metabolismo , Atrofia/patología , Imagen por Resonancia Magnética
3.
AME Case Rep ; 8: 18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234346

RESUMEN

Background: Aminoacylase 1 (ACY1, EC 3.5.1.14) deficiency (ACY1D) is a very rare inherited metabolic disease (IMD) with autosomal recessive inheritance (OMIM #609924). Up to date, only 15 cases have been reported in the literature. It is diagnosed by detecting acetylated amino acids among the patient's urine organic acids by gas chromatography-mass spectrometry. Its clinical manifestations are highly variable, ranging from severe neurological symptoms to being asymptomatic. Case Description: We present a 14-year-old boy with mild intellectual disability, speech sound disorder and non-alcoholic fatty liver disease who exhibited increased urinary excretion of N-acetylalanine, N-acetylmethionine and N-acetylglutamine during testing for inherited metabolic disorders. A suspected ACY1D was subsequently confirmed by targeted next generation sequencing, which revealed the presence of a homozygous pathogenic missense mutation in the ACY1 gene, c.1057C>T (p.Arg353Cys). The proband underwent speech education with good outcome. The same homozygous mutation in ACY1 gene was found in the boy's two brothers, who exhibited slightly varied intellectual abilities. Follow-up examinations of the siblings revealed no deterioration in their mental skills. Conclusions: These results suggest that uneven mental abilities in pediatric patients with various disorders including autism spectrum disorder may be sufficient grounds to warrant metabolic testing for ACY1D. The acylglycines urine excretion could be a promising novel metabolic marker for ACY1D testing.

4.
Neurochem Int ; 171: 105631, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852579

RESUMEN

Aminoacylase 1 (ACY1) deficiency is a rare genetic disorder that affects the breakdown of short-chain aliphatic N-acetylated amino acids, leading to the accumulation of these amino acid derivatives in the urine of patients. Some of the affected individuals have presented with heterogeneous neurological symptoms such as psychomotor delay, seizures, and intellectual disability. Considering that the pathological mechanisms of brain damage in this disorder remain mostly unknown, here we investigated whether major metabolites accumulating in ACY1 deficiency, namely N-acetylglutamate (NAG) and N-acetylmethionine (NAM), could be toxic to the brain by examining their in vitro effects on important mitochondrial properties. We assessed the effects of NAG and NAM on membrane potential, swelling, reducing equivalents, and Ca2+ retention capacity in purified mitochondrial preparations obtained from the brain of adolescent rats. NAG and NAM decreased mitochondrial membrane potential, reducing equivalents, and calcium retention capacity, and induced swelling in Ca2+-loaded brain mitochondria supported by glutamate plus malate. Notably, these changes were completely prevented by the classical inhibitors of mitochondrial permeability transition (MPT) pore cyclosporin A plus ADP and by ruthenium red, implying the participation of MPT and Ca2+ in these effects. Our findings suggest that NAG- and NAM-induced disruption of mitochondrial functions involving MPT may represent relevant mechanisms of neuropathology in ACY1 deficiency.


Asunto(s)
Encéfalo , Metabolismo Energético , Mitocondrias , Animales , Ratas , Encéfalo/metabolismo , Calcio/metabolismo , Ácidos Grasos/metabolismo , Glutamatos/farmacología , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/farmacología , Envejecimiento
5.
JIMD Rep ; 39: 89-96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28766179

RESUMEN

Glutaric aciduria type 3 (GA3) is associated with decreased conversion of free glutaric acid to glutaryl-coA, reflecting deficiency of succinate-hydroxymethylglutarate coA-transferase, caused by variants in the SUGCT (C7orf10) gene. GA3 remains less well known, characterised and understood than glutaric aciduria types 1 and 2. It is generally considered a likely "non-disease," but this is based on limited supporting information, with only nine individuals with GA3 described in the literature. Clinicians encountering a patient with GA3 therefore still face a dilemma of whether or not this should be dismissed as irrelevant.We have identified three unrelated Canadian patients with GA3. Two came to clinical attention because of symptoms, while the third was identified by a population urine-based newborn screening programme and has so far remained asymptomatic. We describe the clinical histories, biochemical characterisation and genotypes of these individuals. Examination of allele frequencies underlines the fact that GA3 is underdiagnosed. While one probable factor is that some GA3 patients remain asymptomatic, we highlight other plausible reasons whereby this diagnosis might be overlooked.Gastrointestinal disturbances were previously reported in some GA3 patients. In one of our patients, severe episodes of cyclic vomiting were the major problem. A trial of antibiotic treatment, to minimise bacterial GA production, was followed by significant clinical improvement.At present, there is insufficient evidence to define any specific clinical phenotype as attributable to GA3. However, we consider that it would be premature to assume that this condition is completely benign in all individuals at all times.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA