RESUMEN
Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.
Asunto(s)
Circulación Colateral/fisiología , Corazón/crecimiento & desarrollo , Regeneración/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Quimiocina CXCL12/metabolismo , Vasos Coronarios/crecimiento & desarrollo , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Receptores CXCR4/metabolismo , Transducción de SeñalRESUMEN
Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
Asunto(s)
Arterias/inervación , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Neurotransmisores/fisiologíaRESUMEN
Advances in fluorescence microscopy and tissue-clearing have revolutionised 3D imaging of fluorescently labelled tissues, organs and embryos. However, the complexity and high cost of existing software and computing solutions limit their widespread adoption, especially by researchers with limited resources. Here, we present Acto3D, an open-source software, designed to streamline the generation and analysis of high-resolution 3D images of targets labelled with multiple fluorescent probes. Acto3D provides an intuitive interface for easy 3D data import and visualisation. Although Acto3D offers straightforward 3D viewing, it performs all computations explicitly, giving users detailed control over the displayed images. Leveraging an integrated graphics processing unit, Acto3D deploys all pixel data to system memory, reducing visualisation latency. This approach facilitates accurate image reconstruction and efficient data processing in 3D, eliminating the need for expensive high-performance computers and dedicated graphics processing units. We have also introduced a method for efficiently extracting lumen structures in 3D. We have validated Acto3D by imaging mouse embryonic structures and by performing 3D reconstruction of pharyngeal arch arteries while preserving fluorescence information. Acto3D is a cost-effective and efficient platform for biological research.
Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Imagenología Tridimensional/métodos , Animales , Ratones , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Embrión de Mamíferos/diagnóstico por imagenRESUMEN
BACKGROUND: The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart. METHODS: Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species. RESULTS: We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. Esm1-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism. CONCLUSIONS: A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.
Asunto(s)
Vasos Coronarios , Neovascularización Fisiológica , Animales , Vasos Coronarios/embriología , Vasos Coronarios/metabolismo , Humanos , Ratones , Análisis de la Célula Individual , Células Endoteliales/metabolismo , Transcriptoma , Linaje de la Célula , Ratones Endogámicos C57BL , Masculino , Femenino , Miocardio/metabolismo , Miocardio/citologíaRESUMEN
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Enfermedades Cardiovasculares/epidemiología , Envejecimiento , Ejercicio Físico , Terapia por Ejercicio , Factores de RiesgoRESUMEN
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Asunto(s)
Encéfalo , Células Mieloides , Envejecimiento , Encéfalo/irrigación sanguínea , HumanosRESUMEN
BACKGROUND: Endothelial cell (EC) generation and turnover by self-proliferation contributes to vascular repair and regeneration. The ability to accurately measure the dynamics of EC generation would advance our understanding of cellular mechanisms of vascular homeostasis and diseases. However, it is currently challenging to evaluate the dynamics of EC generation in large vessels such as arteries because of their infrequent proliferation. METHODS: By using dual recombination systems based on Cre-loxP and Dre-rox, we developed a genetic system for temporally seamless recording of EC proliferation in vivo. We combined genetic recording of EC proliferation with single-cell RNA sequencing and gene knockout to uncover cellular and molecular mechanisms underlying EC generation in arteries during homeostasis and disease. RESULTS: Genetic proliferation tracing reveals that ≈3% of aortic ECs undergo proliferation per month in adult mice during homeostasis. The orientation of aortic EC division is generally parallel to blood flow in the aorta, which is regulated by the mechanosensing protein Piezo1. Single-cell RNA sequencing analysis reveals 4 heterogeneous aortic EC subpopulations with distinct proliferative activity. EC cluster 1 exhibits transit-amplifying cell features with preferential proliferative capacity and enriched expression of stem cell markers such as Sca1 and Sox18. EC proliferation increases in hypertension but decreases in type 2 diabetes, coinciding with changes in the extent of EC cluster 1 proliferation. Combined gene knockout and proliferation tracing reveals that Hippo/vascular endothelial growth factor receptor 2 signaling pathways regulate EC proliferation in large vessels. CONCLUSIONS: Genetic proliferation tracing quantitatively delineates the dynamics of EC generation and turnover, as well as EC division orientation, in large vessels during homeostasis and disease. An EC subpopulation in the aorta exhibits more robust cell proliferation during homeostasis and type 2 diabetes, identifying it as a potential therapeutic target for vascular repair and regeneration.
Asunto(s)
Diabetes Mellitus Tipo 2 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Aorta/metabolismo , Células Endoteliales/metabolismo , Homeostasis , Canales Iónicos/metabolismoRESUMEN
Myocardial infarction with nonobstructive coronary arteries (MINOCA) is an important subtype of myocardial infarction (MI) that occurs in approximately 6-8% of patients with spontaneous MI who are referred for coronary angiography. MINOCA disproportionately affects women, but men are also affected. Pathogenesis is more variable than in MI with obstructive coronary artery disease (MI-CAD). Dominant mechanisms include atherosclerosis, thrombosis, and coronary artery spasm. Management of MINOCA varies based on the underlying mechanism of infarction. Therefore, systematic approaches to diagnosis are recommended. The combination of invasive coronary angiography, multivessel intracoronary imaging, provocative testing for coronary spasm, and cardiac magnetic resonance imaging provides the greatest diagnostic yield. Current clinical practice guidelines for the secondary prevention of MI are based largely on data from patients with MI-CAD. Thus, optimal medications after MINOCA are uncertain. Clinical trials focused on the treatment of patients with MINOCA are urgently needed to define optimal care.
Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Masculino , Humanos , Femenino , MINOCA , Factores de Riesgo , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Angiografía Coronaria/efectos adversosRESUMEN
BACKGROUND: Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS: We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS: JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS: As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.
Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Músculo Liso Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigénesis Genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Senescencia Celular/genética , Ratones Noqueados , Miocitos del Músculo Liso/metabolismoRESUMEN
BACKGROUND: One strategy to reduce the burden of cardiovascular disease is the early detection and treatment of atherosclerosis. This has led to significant interest in studies of subclinical atherosclerosis, using different phenotypes, not all of which are accurate reflections of the presence of asymptomatic atherosclerotic plaques. The aim of part 2 of this series is to provide a review of the existing literature on purported measures of subclinical disease and recommendations concerning which tests may be appropriate in the prevention of incident cardiovascular disease. METHODS: We conducted a critical review of measurements used to infer the presence of subclinical atherosclerosis in the major conduit arteries and focused on the predictive value of these tests for future cardiovascular events, independent of conventional cardiovascular risk factors, in asymptomatic people. The emphasis was on studies with >10 000 person-years of follow-up, with meta-analysis of results reporting adjusted hazard ratios (HRs) with 95% CIs. The arterial territories were limited to carotid, coronary, aorta, and lower limb arteries. RESULTS: In the carotid arteries, the presence of plaque (8 studies) was independently associated with future stroke (pooled HR, 1.89 [1.04-3.44]) and cardiac events (7 studies), with a pooled HR, 1.77 (1.19-2.62). Increased coronary artery calcium (5 studies) was associated with the risk of coronary heart disease events, pooled HR, 1.54 (1.07-2.07) and increasing severity of calcification (by Agaston score) was associated with escalation of risk (13 studies). An ankle/brachial index (ABI) of <0.9, the pooled HR for cardiovascular death from 7 studies was 2.01 (1.43-2.81). There were insufficient studies of either, thoracic or aortic calcium, aortic diameter, or femoral plaque to synthesize the data based on consistent reporting of these measures. CONCLUSIONS: The presence of carotid plaque, coronary artery calcium, or abnormal ankle pressures seems to be a valid indicator of the presence of subclinical atherosclerosis and may be considered for use in biomarker, Mendelian randomization and similar studies.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Enfermedades Cardiovasculares/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico , Calcio , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Aterosclerosis/genética , Placa Aterosclerótica/complicaciones , BiomarcadoresRESUMEN
BACKGROUND: Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS: Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS: Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS: The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.
Asunto(s)
Proteínas de Anclaje a la Quinasa A , Canales de Calcio Tipo L , Arterias Cerebrales , Modelos Animales de Enfermedad , Hipertensión , Músculo Liso Vascular , Miocitos del Músculo Liso , Ratas Endogámicas SHR , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Hipertensión/fisiopatología , Hipertensión/metabolismo , Hipertensión/genética , Arterias Cerebrales/metabolismo , Arterias Cerebrales/fisiopatología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Masculino , Miocitos del Músculo Liso/metabolismo , Condicionamiento Físico Animal/fisiología , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Señalización del Calcio , Ratones Endogámicos C57BL , Ratones , Ratas , Ratas Endogámicas WKY , Angiotensina II , Presión Sanguínea , Transducción de SeñalRESUMEN
BACKGROUND: Flavonoids may play a role in mitigating atherosclerotic cardiovascular diseases, with evidence suggesting effects may differ between vascular beds. Studies examining associations with subclinical markers of atherosclerosis between subpopulations with different underlying risks of atherosclerosis are lacking. METHODS: Among 5599 participants from the MESA (Multi-Ethnic Study of Atherosclerosis), associations between dietary flavonoid intakes (estimated from a food frequency questionnaire) and subclinical measures of atherosclerosis (ankle-brachial index, carotid plaques and intima-media thickness, and coronary artery calcification) were examined using repeated measures models. Exposures and outcomes were measured at exam 1 (2000-2002) and exam 5 (2010-2011). Stratified analyses and interaction terms were used to explore effect modification by time, sex, race/ethnicity, and smoking status. RESULTS: In the analytic population, at baseline, ≈46% were men with a median age of 62 (interquartile range, 53-70) years and total flavonoid intakes of 182 (interquartile range, 98-308) mg/d. After multivariable adjustments, participants with the highest (quartile 4) versus lowest (quartile 1) total flavonoid intakes had 26% lower odds of having an ankle-brachial index <1 (odds ratio, 0.74 [95% CI, 0.60-0.92]) and 18% lower odds of having a carotid plaque (odds ratio, 0.82 [95% CI, 0.69-0.99]), averaged over exams 1 and 5. Moderate (quartile 3) to high (quartile 4) intakes of flavonols, flavanol monomers, and anthocyanins were associated with 19% to 34% lower odds of having an ankle-brachial index <1 and 18% to 20% lower odds of having carotid plaque. Participants with the highest intakes of anthocyanins (quartile 4) at baseline had a marginally slower rate of carotid plaque progression than those with moderate intakes (quartiles 2 and 3). There were no significant associations with intima-media thickness or coronary artery calcification. Observed associations did not differ by sex, race/ethnicity, or smoking status. CONCLUSIONS: In this multi-ethnic population, higher dietary flavonoid intakes were associated with lower odds of peripheral and carotid artery atherosclerosis. Increasing intakes of healthy, flavonoid-rich foods may protect against atherosclerosis in the peripheral and carotid arteries.
Asunto(s)
Índice Tobillo Braquial , Enfermedades Asintomáticas , Enfermedades de las Arterias Carótidas , Grosor Intima-Media Carotídeo , Flavonoides , Placa Aterosclerótica , Calcificación Vascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Flavonoides/administración & dosificación , Estados Unidos/epidemiología , Enfermedades de las Arterias Carótidas/etnología , Enfermedades de las Arterias Carótidas/epidemiología , Enfermedades de las Arterias Carótidas/prevención & control , Calcificación Vascular/epidemiología , Calcificación Vascular/etnología , Calcificación Vascular/prevención & control , Anciano de 80 o más Años , Factores de Riesgo , Estudios Prospectivos , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/prevención & control , Enfermedad de la Arteria Coronaria/etnología , Enfermedad de la Arteria Coronaria/diagnóstico , Medición de Riesgo , Dieta/efectos adversos , Factores Protectores , Factores de Tiempo , Aterosclerosis/etnología , Aterosclerosis/prevención & control , Aterosclerosis/epidemiología , Oportunidad RelativaRESUMEN
Gravity affects the physiology of many animals, and the effect is, for good reason, most pronounced in tall species. The physiology-in particular, cardiovascular function-of giraffes has therefore captivated the interest of physiologists for centuries. Several studies document high mean arterial blood pressure of giraffes of about 200 mm Hg. This appears necessary to establish a cerebral perfusion pressure on the order of 100 mm Hg at the cranial end of the carotid arteries. Here, we discuss the unique characteristics of blood vessels, the heart, and the kidney of giraffes and how these functional and structural adaptations are related to very high blood pressure. We also discuss how the cerebral circulation of giraffes is established and what we know about how the blood flow and arterial and venous pressures in giraffes change when they stop to drink and subsequently lift their heads 5-6 m in one sweeping movement.
Asunto(s)
Sistema Cardiovascular/fisiopatología , Jirafas/fisiología , Animales , Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , HumanosRESUMEN
BACKGROUND: During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS: We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS: Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Asunto(s)
Músculo Liso Vascular , Cresta Neural , Animales , Ratones , Aorta , Aorta Torácica , Región Branquial , Músculo Liso Vascular/metabolismoRESUMEN
One-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in vivo imaging introduces variability in network size and vessel dimensions, affecting haemodynamic predictions. Understanding the influence of variation in image-derived properties is essential to assess the fidelity of model predictions. Numerous programs exist to render three-dimensional surfaces and construct vessel centrelines. Still, there is no exact way to generate vascular trees from the centrelines while accounting for uncertainty in data. This study introduces an innovative framework employing statistical change point analysis to generate labelled trees that encode vessel dimensions and their associated uncertainty from medical images. To test this framework, we explore the impact of uncertainty in 1D haemodynamic predictions in a systemic and pulmonary arterial network. Simulations explore haemodynamic variations resulting from changes in vessel dimensions and segmentation; the latter is achieved by analysing multiple segmentations of the same images. Results demonstrate the importance of accurately defining vessel radii and lengths when generating high-fidelity patient-specific haemodynamics models. KEY POINTS: This study introduces novel algorithms for generating labelled directed trees from medical images, focusing on accurate junction node placement and radius extraction using change points to provide haemodynamic predictions with uncertainty within expected measurement error. Geometric features, such as vessel dimension (length and radius) and network size, significantly impact pressure and flow predictions in both pulmonary and aortic arterial networks. Standardizing networks to a consistent number of vessels is crucial for meaningful comparisons and decreases haemodynamic uncertainty. Change points are valuable to understanding structural transitions in vascular data, providing an automated and efficient way to detect shifts in vessel characteristics and ensure reliable extraction of representative vessel radii.
Asunto(s)
Hemodinámica , Modelos Cardiovasculares , Humanos , Incertidumbre , Simulación por Computador , Arteria Pulmonar/fisiología , Arteria Pulmonar/diagnóstico por imagenRESUMEN
Fetal undernutrition establishes the foundations for hypertension development, with oxidative stress being a key hallmark. A growing interest in nutraceuticals for treating hypertension and environmental waste concerns prompted the present study aiming to evaluate whether supplementation with a polyphenol enriched extract from cocoa shell (CSE), a by-product from the chocolate industry with antioxidant properties, reduces hypertension of developmental origin, thus improving mesenteric resistance artery (MRA) vasodilatation. Adult male and female offspring from rats exposed to 50% food restriction from mid-gestation (maternal undernutrition, MUN) and controls were used. Supplementation was given through a gelatine (vehicle, VEH) or containing CSE (250 mg kg-1 day-1) 5 days week-1 for 3 weeks. Systolic blood pressure (SBP) was assessed by tail-cuff plethysmography. MRA function was studied by wire myography, and superoxide anion and nitric oxide were investigated by fluorescent indicators and confocal microscopy. Compared to control-VEH, MUN-VEH males showed significantly higher SBP, reduced MRA as well as relaxation to ACh, sodium nitroprusside and the AMPK agonist 5-aminoimidazole-4-carboxamide riboside, but not to isoproterenol. In MUN males, endothelial endothelium-derived hyperpolarizing factor and nitric oxide were unaltered, but MRA released a vasoconstrictor prostanoid and produced higher levels of superoxide anion. CSE normalized blood pressure and improved all above-mentioned MRA alterations in MUN males without an effect on control counterparts, except the reduction of superoxide anion. MUN-VEH females were normotensive and only showed a tendency towards larger superoxide anion production, which was abolished by CSE. CSE supplementation reduces SBP improving endothelium-dependent and independent MRA vasodilatation, related to local superoxide anion reduction, being a potential nutraceutical ingredient to counteract hypertension, in addition to contributing to the circular economy. KEY POINTS: Fetal undernutrition induces hypertension in males associated with deficient resistance artery vasodilatation, being normalized by cocoa shell extract (CSE). Release of a cyclooxygenase-derived contractile factor is the main endothelial alteration, which is abolished by CSE. AMPK and soluble guanylyl cyclase-mediated relaxation are also reduced in smooth muscle cells from maternal undernutrition resistance arteries, being improved by CSE. Vascular oxidative damage caused by excess superoxide anion generation can account for impaired vasodilatation, which is improved by CSE. The capacity of CSE to improve relaxation is probably related to its antioxidant bioactive factors, and thus cocoa shell is a potential food by-product to treat hypertension.
RESUMEN
Hypertension is associated with the presence of vascular abnormalities, including remodeling and rarefaction. These processes play an important role in cerebrovascular disease development; however, the mechanistic changes leading to these diseases are not well characterized. Using data-independent acquisition-based mass spectrometry analysis, here we determined the protein changes in cerebral arteries in pre- and early-onset hypertension from the spontaneously hypertensive rat (SHR), a model that resembles essential hypertension in humans. Our analysis identified 125 proteins with expression levels that were significantly upregulated or downregulated in 12-week-old spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. Using an angiogenesis enrichment analysis, we further identified a critical imbalance in angiogenic proteins that promoted an anti-angiogenic profile in cerebral arteries at early onset of hypertension. In a comparison to previously published data, we demonstrate that this angiogenic imbalance is not present in mesenteric and renal arteries from age-matched SHRs. Finally, we identified two proteins (Fbln5 and Cdh13), whose expression levels were critically altered in cerebral arteries compared to the other arterial beds. The observation of an angiogenic imbalance in cerebral arteries from the SHR reveals critical protein changes in the cerebrovasculature at the early onset of hypertension and provides novel insights into the early pathology of cerebrovascular disease.
RESUMEN
BACKGROUND: Low-density lipoprotein cholesterol (LDL-C) is an important causal risk factor for atherosclerotic cardiovascular disease (ASCVD). However, a sizable proportion of middle-aged individuals with elevated LDL-C level have not developed coronary atherosclerosis as assessed by coronary artery calcification (CAC). Whether presence of CAC modifies the association of LDL-C with ASCVD risk is unknown. We evaluated the association of LDL-C with future ASCVD events in patients with and without CAC. METHODS: The study included 23 132 consecutive symptomatic patients evaluated for coronary artery disease using coronary computed tomography angiography (CTA) from the Western Denmark Heart Registry, a seminational, multicenter-based registry with longitudinal registration of patient and procedure data. We assessed the association of LDL-C level obtained before CTA with ASCVD (myocardial infarction and ischemic stroke) events occurring during follow-up stratified by CAC>0 versus CAC=0 using Cox regression models adjusted for baseline characteristics. Outcomes were identified through linkage among national registries covering all hospitals in Denmark. We replicated our results in the National Heart, Lung, and Blood Institute-funded Multi-Ethnic Study of Atherosclerosis. RESULTS: During a median follow-up of 4.3 years, 552 patients experienced a first ASCVD event. In the overall population, LDL-C (per 38.7 mg/dL increase) was associated with ASCVD events occurring during follow-up (adjusted hazard ratio [aHR], 1.14 [95% CI, 1.04-1.24]). When stratified by the presence or absence of baseline CAC, LDL-C was only associated with ASCVD in the 10 792/23 132 patients (47%) with CAC>0 (aHR, 1.18 [95% CI, 1.06-1.31]); no association was observed among the 12 340/23 132 patients (53%) with CAC=0 (aHR, 1.02 [95% CI, 0.87-1.18]). Similarly, a very high LDL-C level (>193 mg/dL) versus LDL-C <116 mg/dL was associated with ASCVD in patients with CAC>0 (aHR, 2.42 [95% CI, 1.59-3.67]) but not in those without CAC (aHR, 0.92 [0.48-1.79]). In patients with CAC=0, diabetes, current smoking, and low high-density lipoprotein cholesterol levels were associated with future ASCVD events. The principal findings were replicated in the Multi-Ethnic Study of Atherosclerosis. CONCLUSIONS: LDL-C appears to be almost exclusively associated with ASCVD events over ≈5 years of follow-up in middle-aged individuals with versus without evidence of coronary atherosclerosis. This information is valuable for individualized risk assessment among middle-aged people with or without coronary atherosclerosis.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Calcificación Vascular , Persona de Mediana Edad , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/complicaciones , LDL-Colesterol , Enfermedades Cardiovasculares/complicaciones , Factores de Riesgo , Medición de Riesgo/métodos , Sistema de Registros , Dinamarca/epidemiología , Calcificación Vascular/complicacionesRESUMEN
BACKGROUND: Small, randomized trials of patients with cervical artery dissection showed conflicting results regarding optimal stroke prevention strategies. We aimed to compare outcomes in patients with cervical artery dissection treated with antiplatelets versus anticoagulation. METHODS: This is a multicenter observational retrospective international study (16 countries, 63 sites) that included patients with cervical artery dissection without major trauma. The exposure was antithrombotic treatment type (anticoagulation versus antiplatelets), and outcomes were subsequent ischemic stroke and major hemorrhage (intracranial or extracranial hemorrhage). We used adjusted Cox regression with inverse probability of treatment weighting to determine associations between anticoagulation and study outcomes within 30 and 180 days. The main analysis used an as-treated crossover approach and only included outcomes occurring with the above treatments. RESULTS: The study included 3636 patients (402 [11.1%] received exclusively anticoagulation and 2453 [67.5%] received exclusively antiplatelets). By day 180, there were 162 new ischemic strokes (4.4%) and 28 major hemorrhages (0.8%); 87.0% of ischemic strokes occurred by day 30. In adjusted Cox regression with inverse probability of treatment weighting, compared with antiplatelet therapy, anticoagulation was associated with a nonsignificantly lower risk of subsequent ischemic stroke by day 30 (adjusted hazard ratio [HR], 0.71 [95% CI, 0.45-1.12]; P=0.145) and by day 180 (adjusted HR, 0.80 [95% CI, 0.28-2.24]; P=0.670). Anticoagulation therapy was not associated with a higher risk of major hemorrhage by day 30 (adjusted HR, 1.39 [95% CI, 0.35-5.45]; P=0.637) but was by day 180 (adjusted HR, 5.56 [95% CI, 1.53-20.13]; P=0.009). In interaction analyses, patients with occlusive dissection had significantly lower ischemic stroke risk with anticoagulation (adjusted HR, 0.40 [95% CI, 0.18-0.88]; Pinteraction=0.009). CONCLUSIONS: Our study does not rule out the benefit of anticoagulation in reducing ischemic stroke risk, particularly in patients with occlusive dissection. If anticoagulation is chosen, it seems reasonable to switch to antiplatelet therapy before 180 days to lower the risk of major bleeding. Large prospective studies are needed to validate our findings.
Asunto(s)
Disección Aórtica , Fibrilación Atrial , Disección de la Arteria Carótida Interna , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Anticoagulantes/uso terapéutico , Fibrinolíticos/uso terapéutico , Estudios Retrospectivos , Disección de la Arteria Carótida Interna/complicaciones , Disección de la Arteria Carótida Interna/tratamiento farmacológico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Hemorragia/inducido químicamente , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Arterias , Fibrilación Atrial/complicaciones , Resultado del TratamientoRESUMEN
Asymptomatic high-grade carotid stenosis is an important therapeutic target for stroke prevention. For decades, the ACAS (Asymptomatic Carotid Atherosclerosis Study) and ACST (Asymptomatic Carotid Surgery Trial) trials provided most of the evidence supporting endarterectomy for patients with asymptomatic high-grade stenosis who were otherwise good candidates for surgery. Since then, transfemoral/transradial carotid stenting and transcarotid artery revascularization have emerged as alternatives to endarterectomy for revascularization. Advances in treatments against atherosclerosis have driven down the rates of stroke in patients managed without revascularization. SPACE-2 (Stent-Protected Angioplasty Versus Carotid Endarterectomy-2), a trial that included endarterectomy, stenting, and medical arms, failed to detect significant differences in stroke rates among treatment groups, but the study was stopped well short of its recruitment goal. CREST-2 (Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Trial) will be able to clarify whether revascularization by stenting or endarterectomy remains efficacious under conditions of intensive medical management. Transcarotid artery revascularization has a favorable periprocedural risk profile, but randomized trials comparing it to intensive medical management are lacking. Features like intraplaque hemorrhage on MRI and echolucency on B-mode ultrasonography can identify patients at higher risk of stroke with asymptomatic stenosis. High-grade stenosis with poor collaterals can cause hemispheric hypoperfusion, and unstable plaque can cause microemboli, both of which may be treatable risk factors for cognitive impairment. Evidence that there are patients with carotid stenosis who benefit cognitively from revascularization is presently lacking. New risk factors are emerging, like exposure to microplastics and nanoplastics. Strategies to limit exposure will be important without specific medical therapies.