RESUMEN
One of the independent risk factors for atrial fibrillation is diabetes mellitus (DM); however, the underlying mechanisms causing atrial fibrillation in DM are unknown. The underlying mechanism of Atrogin-1-mediated SK2 degradation and associated signaling pathways are unclear. The aim of this study was to elucidate the relationship among reactive oxygen species (ROS), the NF-κB signaling pathway, and Atrogin-1 protein expression in the atrial myocardia of DM mice. We found that SK2 expression was downregulated comitant with increased ROS generation and enhanced NF-κB signaling activation in the atrial cardiomyocytes of DM mice. These observations were mimicked by exogenously applicating H2O2 and by high glucose culture conditions in HL-1 cells. Inhibition of ROS production by diphenyleneiodonium chloride or silencing of NF-κB by siRNA decreased the protein expression of NF-κB and Atrogin-1 and increased that of SK2 in HL-1 cells with high glucose culture. Moreover, chromatin immunoprecipitation assay demonstrated that NF-κB/p65 directly binds to the promoter of the FBXO32 gene (encoding Atrogin-1), regulating the FBXO32 transcription. Finally, we evaluated the therapeutic effects of curcumin, known as a NF-κB inhibitor, on Atrogin-1 and SK2 expression in DM mice and confirmed that oral administration of curcumin for 4 weeks significantly suppressed Atrogin-1 expression and protected SK2 expression against hyperglycemia. In summary, the results from this study indicated that the ROS/NF-κB signaling pathway participates in Atrogin-1-mediated SK2 regulation in the atria of streptozotocin-induced DM mice.
Asunto(s)
Diabetes Mellitus Experimental , Atrios Cardíacos , Proteínas Musculares , FN-kappa B , Especies Reactivas de Oxígeno , Proteínas Ligasas SKP Cullina F-box , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Animales , Ratones , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Línea Celular , Inmunoprecipitación de Cromatina , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Peróxido de Hidrógeno/farmacología , Hiperglucemia/genética , Hiperglucemia/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio , Miocitos Cardíacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , ARN Interferente Pequeño , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismoRESUMEN
Sarcopenia is associated with various geriatric diseases, such as gait disorders, falls, malnutrition, and osteoporosis. Accordingly, interest in the prevention and treatment of sarcopenia has grown over the years. The human milk oligosaccharide (HMO) 6'-sialyllactose (6'-SL) is known to improve exercise performance, reduce muscle fatigue, and improve GNE myopathy; however, its effect on sarcopenia has not yet been reported. In this study, we aimed to investigate the efficacy of 6'-SL in dexamethasone-induced muscle atrophy, which is a widely used model for the study of sarcopenia. The effects of 6'-SL on differentiated C2C12 skeletal muscle cells and on mice were examined by treatment with 6'-SL in the presence or absence of dexamethasone. 6'-SL was found to inhibit the dexamethasone-induced decrease of MHC expression, as well as to prevent reduction in the number, length, and width of myotubes. Furthermore, the dexamethasone-induced upregulation of myostatin, muscle RING-finger protein-1 (MuRF1), and atrogin-1 were also inhibited by 6'-SL treatment. In mice, intraperitoneal administration of dexamethasone caused decreases in muscle fiber diameter, muscle weight, and exercise performance, most of which were significantly inhibited by oral treatment with 6'-SL. Therefore, utilization of 6'-SL could contribute to the prevention and treatment of muscle atrophy and sarcopenia.
RESUMEN
Skeletal muscle atrophy is the loss of muscle tissue caused by factors such as inactivity, malnutrition, aging, and injury. In this study, we aimed to investigate whether egg components exert inhibitory effects on muscle atrophy. An egg mix solution was orally administered for 10 consecutive days to male C57BL/6J mice injected with cardiotoxin in the tibialis anterior (TA) muscle. The administration of egg mixture significantly decreased the atrogin-1 and MuRF-1 protein levels, key factors in muscle atrophy, as observed by western blotting. Furthermore, we investigated the effects of egg components such as avidin, lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine on dexamethasone (DEX)-treated C2C12 myotubes. Lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine in egg yolk significantly recovered the diameters of C2C12 myotubes decreased upon DEX application. Avidin did not show such reversal. Biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine also attenuated atrogin-1 protein expression enhanced by DEX. Our findings reveal that egg yolk components could contribute to the reversal of skeletal muscle atrophy induced by muscle injury.
Asunto(s)
Dexametasona , Atrofia Muscular , Animales , Dexametasona/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Post-exercise cooling studies reveal inhibitory effects on markers of skeletal muscle growth. However, the isolated effect of local cold application has not been adequately addressed. It is unclear if the local cold or the combination of local cold and exercise is driving negatively altered skeletal muscle gene expression. The purpose was to determine the effects of a 4 h local cold application to the vastus lateralis on the myogenic and proteolytic response. Participants (n = 12, 27 ± 6 years, 179 ± 9 cm, 82.8 ± 13.0 kg, 18.4 ± 7.1 %BF) rested with a thermal wrap placed on each leg with either circulating cold fluid (10 °C, COLD) or no fluid circulation (room temperature, RT). Muscle samples were collected to quantify mRNA (RT-qPCR) and proteins (Western Blot) associated with myogenesis and proteolysis. Temperatures in COLD were lower than RT at the skin (13.2 ± 1.0 °C vs. 34.8 ± 0.9 °C; p < 0.001) and intramuscularly (20.5 ± 1.3 °C vs. 35.6 ± 0.8 °C, p < 0.001). Myogenic-related mRNA, MYO-G and MYO-D1, were lower in COLD (p = 0.001, p < 0.001, respectively) whereas myogenic-mRNA, MYF6, was greater in COLD (p = 0.002). No other myogenic associated genes were different between COLD and RT (MSTN, p = 0.643; MEF2a, p = 0.424; MYF5, p = 0.523; RPS3, p = 0.589; RPL3-L, p = 0.688). Proteolytic-related mRNA was higher in COLD (FOXO3a, p < 0.001; Atrogin-1, p = 0.049; MURF-1, p < 0.001). The phosphorylation:total protein ratio for the translational repressor of muscle mass, 4E-BP1Thr37/46, was lower in COLD (p = 0.043), with no differences in mTORser2448 (p = 0.509) or p70S6K1Thr389 (p = 0.579). Isolated local cooling over 4 h exhibits inhibited myogenic and higher proteolytic skeletal muscle molecular response.
Asunto(s)
Criopreservación , Músculo Esquelético , Humanos , Proteolisis , Criopreservación/métodos , Músculo Esquelético/metabolismo , ARN Mensajero/genética , Desarrollo de MúsculosRESUMEN
BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKα and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Madre Pluripotentes Inducidas , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia/metabolismo , Atrofia/patología , Hipoxia/metabolismo , Autofagia , ARN Mensajero/metabolismoRESUMEN
The development and maintenance of skeletal muscle is crucial for the support of daily function. Recent evidence suggests that genes coded for proteins associated with the human muscle growth program (myogenic and proteolytic genes) are sensitive to local heat application. Therefore, the purpose of this investigation was to determine the effect of 4 h of local heat application to the vastus lateralis at rest on acute phosphorylation (mTORSer2448, p70-S6K1Thr389, and 4E-BP1Thr47/36) and gene expression changes for proteins associated with the muscle growth program. Intramuscular temperature of the HOT limb was 1.2 ± 0.2 °C higher than CON limb after 4 h of local heating. However, this local heat stimulus did not influence transcription of genes associated with myogenesis (MSTN, p = 0.321; MYF5, p = 0.445; MYF6, p = 0.895; MEF2a, p = 0.809; MYO-G, p = 0.766; MYO-D1, p = 0.118; RPS3, p = 0.321; and RPL-3L, p = 0.577), proteolysis (Atrogin-1, p = 0.573; FOXO3a, p = 0.452; MURF-1, p = 0.284), nor protein phosphorylation (mTORSer2448, p = 0.981; P70-S6K1Thr389, p = 0.583; 4E-BP1Thr37/46, p = 0.238) associated with the muscle growth program. These findings suggest little to no association between the local application of heat, at rest, and the activation of the observed muscle growth program-related markers.
Asunto(s)
Calor , Serina-Treonina Quinasas TOR , Humanos , Fosforilación , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Músculo Esquelético/metabolismoRESUMEN
BACKGROUND: The change in myocardial protein degradation systems after ventricular unloading has been unknown. We aimed to evaluate the anti-hypertrophic protein adenosine monophosphate-activated protein kinase (AMPK) and two major protein degradation systems (ubiquitin proteasome system and autophagy) in a model of surgical ventricular reconstruction (SVR) in rats with ischemic cardiomyopathy. METHODS AND RESULTS: Rats were randomized into the following groups: sham/sham (control group), myocardial infarction (MI)/sham (sham group) and MI/SVR (SVR group), with an interval of 4 weeks. Two (early, n = 5 for each) and 28 days (late, n = 5 for each) after SVR, ventricular size, and wall stress were assessed. Myocyte area, protein expression of AMPKα and autophagy markers, and gene expression of ubiquitin ligases (Atrogin-1 and Murf-1) were evaluated in the late phase. In the early phase, left ventricular dimensions and wall stress were smaller in the SVR group than in the sham group, whereas they were comparable in the late period. Myocyte area in the SVR group was reduced to the value in the control group, while it was larger in the sham group than in the control group. Total-AMPKα, p-AMPKα, and AMPKα phosphorylation rates were higher, and Atrogin-1 and Murf-1 were lower in the SVR group than in the sham group, while the autophagy markers were not different between the groups. p-AMPKα had strong negative correlations with myocyte area, Atrogin-1, and Murf-1. CONCLUSIONS: In myocyte reverse remodeling after SVR, AMPKα phosphorylation increased in association with reduced gene expression of ubiquitin ligases.
Asunto(s)
Cardiomiopatías , Infarto del Miocardio , Proteínas Quinasas Activadas por AMP , Animales , Ventrículos Cardíacos/metabolismo , Células Musculares/metabolismo , Infarto del Miocardio/metabolismo , Ratas , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Remodelación VentricularRESUMEN
This study was designed to investigate the therapeutic effects of taurine in attenuating muscle atrophy. C26 carcinoma cells were cultured and injected into the scapulae of Balb/c mice with 1 × 106 cells. Taurine (200 µl suspension) was orally administered at the concentration of 200 mg/kg of body weight for 2 weeks. Femur muscle tissue, spleen, and gonadal fat tissue were collected and weighed. Muscle tissue was stained by H&E for histopathological analysis. The transcriptional expression of atrogin-1 and MuRF-1 gene was checked by real-time PCR. C26 cells, which induced tumor growth, caused a loss in muscle mass and gonadal fat tissue mass. Simultaneously, there was an increase in spleen and tumor tissue mass. In contrast, taurine supplementation showed a downregulatory effect on the transcriptional expression profile of muscle degradative factors atrogin-1 and MuRF-1. Our findings suggest that taurine has the potential to inhibit muscle atrophy and can be developed as a safe treatment option against muscle loss in sarcopenia patients.
Asunto(s)
Caquexia , Neoplasias , Animales , Caquexia/tratamiento farmacológico , Caquexia/genética , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ratones , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/genética , Neoplasias/patología , Proteolisis , Taurina/metabolismo , Taurina/farmacología , Taurina/uso terapéuticoRESUMEN
PURPOSE: Left ventricular hypertrophy (LVH) is a cardiovascular complication highly prevalent in patients with chronic kidney disease (CKD). Previous studies analyzing 1α-hydroxylase or vitamin D receptor (Vdr) knockout mice revealed active vitamin D as a promising agent inhibiting LVH progression. Paricalcitol, an active vitamin D analog, failed to suppress the progression of LV mass index (LVMI) in pre-dialysis patients with CKD. As target genes of activated VDR differ depending on its agonists, we examined the effects of maxacalcitol (22-oxacalcitriol: OCT), a less calcemic active vitamin D analog, on LVH in hemodialysis patients and animal LVH models with renal insufficiency. METHODS: In retrospective cohort study, patients treated with OCT who underwent hemodialysis were enrolled. Using cardiac echocardiography, LV mass was evaluated by the area-length method. In animal study, angiotensin II (Ang II)-infused Wister rats with heminephrectomy or Ang II-stimulated neonatal rat ventricular myocytes (NRVM) were treated with OCT. RESULTS: OCT significantly inhibited the progression of LVMI in hemodialysis patients. In Ang II-infused heminephrectomized rats, OCT suppressed the progression of LVH in a blood pressure-independent manner. OCT also suppressed the activity of calcineurin in the left ventricle of model rats. Specifically, OCT reduced the protein levels of calcineurin A, but not the mRNA levels of Ppp3ca (calcineurin Aα). Luciferase assays showed that OCT increased the promoter activity of Fbxo32 (atrogin1), an E3 ubiquitin ligase targeting calcineurin A. Finally, OCT promoted ubiquitination and degradation of calcineurin A. CONCLUSION: Our works indicated that OCT retards progression of LVH through calcineurin-NFAT pathway, which reveal a novel aspect of OCT in attenuating pathological LVH.
Asunto(s)
Calcitriol/análogos & derivados , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Insuficiencia Renal/complicaciones , Anciano , Animales , Calcineurina/efectos de los fármacos , Calcitriol/farmacología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Embarazo , Ratas , Ratas Wistar , Estudios RetrospectivosRESUMEN
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation, but the underlying ionic mechanism for this association remains unclear. We recently reported that expression of the small-conductance calcium-activated potassium channel 2 (SK2, encoded by KCCN2) in atria from diabetic mice is significantly down-regulated, resulting in reduced SK currents in atrial myocytes from these mice. We also reported that the level of SK2 mRNA expression is not reduced in DM atria but that the ubiquitin-proteasome system (UPS), a major mechanism of intracellular protein degradation, is activated in vascular smooth muscle cells in DM. This suggests a possible role of the UPS in reduced SK currents. To test this possibility, we examined the role of the UPS in atrial SK2 down-regulation in DM. We found that a muscle-specific E3 ligase, F-box protein 32 (FBXO-32, also called atrogin-1), was significantly up-regulated in diabetic mouse atria. Enhanced FBXO-32 expression in atrial cells significantly reduced SK2 protein expression, and siRNA-mediated FBXO-32 knockdown increased SK2 protein expression. Furthermore, co-transfection of SK2 with FBXO-32 complementary DNA in HEK293 cells significantly reduced SK2 expression, whereas co-transfection with atrogin-1ΔF complementary DNA (a nonfunctional FBXO-32 variant in which the F-box domain is deleted) did not have any effects on SK2. These results indicate that FBXO-32 contributes to SK2 down-regulation and that the F-box domain is essential for FBXO-32 function. In conclusion, DM-induced SK2 channel down-regulation appears to be due to an FBXO-32-dependent increase in UPS-mediated SK2 protein degradation.
Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Proteínas Musculares/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Ratones , Proteínas Musculares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Estreptozocina , Células Tumorales Cultivadas , Ubiquitina/metabolismoRESUMEN
Irisin is a myokine secreted mainly from skeletal muscle that is known for having beneficial metabolic effects via enhancement of energy expenditure and insulin sensitivity. Studies show that irisin also acts as an autocrine/paracrine to promote myogenesis and muscle growth. However, the protective role of irisin against muscular wasting remains unclear. We confirmed that irisin secretion was upregulated by electrical pulse stimulation an in vitro exercise mimetic model. Next, we tested if irisin exerted an anti-atrophic effect on cultured C2C12 myotubes treated with dexamethasone (DEX), a representative inducer of muscular atrophy. Treatment of cultured myotubes with DEX reduced myotube size and increased proteasome activity, which were attenuated by irisin. Also, irisin effectively prevented dephosphorylation of forkhead box O (FoxO) 3α and upregulation of muscle-specific ubiquitin ligases in DEX-treated myotubes. The protective effect of irisin on DEX-mediated myotube atrophy was partially regulated by insulin-like growth factor-1-dependent signaling. These results suggested that irisin may prevent glucocorticoid-induced muscle atrophy by inhibiting FoxO-mediated ubiquitin-proteasome overactivity.
Asunto(s)
Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/prevención & control , Animales , Línea Celular , Dexametasona/farmacología , Glucocorticoides/farmacología , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Our previous study showed that miR-29 attenuates muscle wasting in chronic kidney disease. Other studies found that miR-29 has anti-fibrosis activity. We hypothesized that intramuscular injection of exosome-encapsulated miR-29 would counteract unilateral ureteral obstruction (UUO)-induced muscle wasting and renal fibrosis. We used an engineered exosome vector, which contains an exosomal membrane protein gene Lamp2b that was fused with the targeting peptide RVG (rabies viral glycoprotein peptide). RVG directs exosomes to organs that express the acetylcholine receptor, such as kidney. The intervention of Exo/miR29 increased muscle cross-sectional area and decreased UUO-induced upregulation of TRIM63/MuRF1 and FBXO32/atrogin-1. Interestingly, renal fibrosis was partially depressed in the UUO mice with intramuscular injection of Exo/miR29. This was confirmed by decreased TGF-ß, alpha-smooth muscle actin, fibronectin, and collagen 1A1 in the kidney of UUO mice. When we used fluorescently labeled Exo/miR29 to trace the Exo/miR route in vivo and found that fluorescence was visible in un-injected muscle and in kidneys. We found that miR-29 directly inhibits YY1 and TGF-ß3, which provided a possible mechanism for inhibition of muscle atrophy and renal fibrosis by Exo/miR29. We conclude that Exo/miR29 ameliorates skeletal muscle atrophy and attenuates kidney fibrosis by downregulating YY1 and TGF-ß pathway proteins.
Asunto(s)
Exosomas/metabolismo , Fibrosis/terapia , Enfermedades Renales/terapia , MicroARNs/fisiología , Atrofia Muscular/terapia , Animales , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Exosomas/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis/genética , Enfermedades Renales/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Atrofia Muscular/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismoRESUMEN
Muscle atrophy is an abnormal condition characterized by loss of skeletal muscle mass and function and is primarily caused by injury, malnutrition, various diseases, and aging. Leaf of lotus (Nelumbo nucifera Gaertn), which has been used for medicinal purposes, contains various active ingredients, including polyphenols, and is reported to exert an antioxidant effect. In this study, we investigated the effect of water extract of lotus leaf (LL) on muscle atrophy and the underlying molecular mechanisms of action. Amounts of 100, 200, or 300 mg/kg/day LL were administered to dexamethasone (DEX)-induced muscle atrophy mice for 4 weeks. Micro-computed tomography (CT) analysis revealed that the intake of LL significantly increased calf muscle volume, surface area, and density in DEX-induced muscle atrophy mice. Administration of LL recovered moving distance, grip strength, ATP production, and body weight, which were decreased by DEX. In addition, muscle damage caused by DEX was also improved by LL. LL reduced the protein catabolic pathway by suppressing gene expression of muscle atrophy F-Box (MAFbx; atrogin-1), muscle RING finger 1 (MuRF1), and forkhead box O (FoxO)3a, as well as phosphorylation of AMP-activated kinase (AMPK). The AKT-mammalian target of the rapamycin (mTOR) signal pathway, which is important for muscle protein synthesis, was increased in LL-administered groups. The HPLC analysis and pharmacological test revealed that quercetin 3-O-beta-glucuronide (Q3G) is a major active component in LL. Thus, Q3G decreased the gene expression of atrogin-1 and MuRF1 and phosphorylation of AMPK. This compound also increased phosphorylation levels of mTOR and its upstream enzyme AKT in DEX-treated C2C12 cells. We identified that LL improves muscle wasting through regulation of muscle protein metabolism in DEX-induced muscle atrophy mice. Q3G is predicted to be one of the major active phenolic components in LL. Therefore, we propose LL as a supplement or therapeutic agent to prevent or treat muscle wasting, such as sarcopenia.
Asunto(s)
Dexametasona/toxicidad , Lotus/química , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Agua/química , Animales , Western Blotting , Línea Celular , Cromatografía Líquida de Alta Presión , Masculino , Ratones , Extractos Vegetales/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Microtomografía por Rayos XRESUMEN
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2 O 2 -induced atrophy is examined. Myotubes were treated with H 2 O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2 O 2 -induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.
Asunto(s)
Acroleína/análogos & derivados , Antioxidantes/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Acroleína/farmacología , Animales , Línea Celular , Peróxido de Hidrógeno/toxicidad , Ratones , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteolisis/efectos de los fármacosRESUMEN
PURPOSE: Decrease in activity stress induces skeletal muscle atrophy. A previous study showed that treatment with a high level (20%) of isoflavone inhibits muscle atrophy after short-term denervation (at 4 days) in mice. The present study was designed to elucidate whether the dietary isoflavone aglycone (AglyMax) at a 0.6% prevents denervation-mediated muscle atrophy, based on the modulation of atrogin-1- or apoptosis-dependent signaling. METHODS: Mice were fed either a normal diet or 0.6% AglyMax diet. One week later, the right sciatic nerve was cut. The wet weight, mean fiber area, amount of atrogin-1 and cleaved caspase-3 proteins, and the percentages of apoptotic nuclei were examined in the gastrocnemius muscle at 14 days after denervation. RESULTS: The 0.6% AglyMax diet significantly attenuated denervation-induced decreases in fiber atrophy but not the muscle wet weight. In addition, dietary isoflavone suppressed the denervation-induced apoptosis in spite of there being no significant changes in the amount of cleaved caspase-3 protein. In contrast, the 0.6% AglyMax diet did not significantly modulate the protein expression of atrogin-1 in the denervated muscle of mice. CONCLUSIONS: The isoflavone aglycone (AglyMax) at a 0.6% significantly would modulate muscle atrophy after denervation in mice, probably due to the decrease in apoptosis-dependent signaling.
Asunto(s)
Isoflavonas/farmacología , Desnervación Muscular , Atrofia Muscular/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos ICRRESUMEN
Type 2 diabetes (T2D) patients suffer from dyspnea, which contributes to disease-related morbidity. Although T2D has been reported to induce a catabolic state in skeletal muscle, whether T2D induces muscle wasting in respiratory muscles has not yet been investigated. In this study, we examine the difference in the molecular signaling signature of muscle wasting between the intercostal and gastrocnemius muscles using db/db mice, a well-known diabetic mouse model. Akt phosphorylation was significantly decreased in both the intercostal and gastrocnemius muscles of db/db mice and was accompanied by a decrease in mTORC1 activity. In addition, FoxO phosphorylation was suppressed, and ubiquitin-proteasome degradation, characterized by the level of Atrogin-1 and MuRF1, was subsequently enhanced in both muscle types of db/db mice. An increase in LC3BII levels and a decrease in p62 levels marked the occurrence of substantial autophagy in the gastrocnemius muscle but not in the intercostal muscles of db/db mice. Therefore, we suggest that the signaling events of muscle wasting in the intercostal muscles of db/db mice are different from those in the gastrocnemius muscle of db/db mice.
Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transducción de Señal , Animales , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patologíaRESUMEN
Muscle accretion is affected by the difference between protein synthesis and its degradation. Studies on different species revealed that muscle proteolysis is mediated by different pathways including the ubiquitin-proteasome pathway in which the ubiquitin protein ligases play an important role. These muscle atrophy associated ligases were not well studied in tilapia. In this study, we characterized the ubiquitin protein ligases MuRF1/2/3, Atrogin-1 and F-box25, members of the ubiquitin-proteasome pathway in tilapia, Oreochromis niloticus, and their expressions in the muscle of starved, fed, refed, and control fish. Sequences of these genes revealed presence of Ring finger, B-box, and Cos domains in all MuRF genes, as well as F-box domain in Atrogin-1 and F-box25 genes. Real-time qPCR data analysis showed that expression of MuRF1/2/3, Atrogin-1, F-box25, and proteasome complex genes was significantly upregulated in starved fish compared to fed fish. Concurrently, the proteasome activity was 1.7-folds elevated in the starved fish compared to fed fish. These results confirm the important role of these genes in muscle degradation and suggest potential usage as markers of muscle accretion in tilapia.
Asunto(s)
Cíclidos/genética , Proteínas de Peces/genética , Proteínas Musculares/genética , Inanición/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Alimentación Animal , Animales , Cíclidos/metabolismo , Proteínas F-Box/genética , Expresión Génica , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismoRESUMEN
Decrease in activity stress induces skeletal muscle atrophy. A previous study showed that treatment with resveratrol inhibits muscular atrophy in mdx mice, a model of DMD. However, almost all studies using resveratrol supplementation have only looked at adaptive changes in the muscle weight. The present study was designed to elucidate whether the resveratrol-inducing attenuation of skeletal muscle actually reflects the adaptation of muscle fibers themselves, based on the modulation of atrogin-1- or p62-dependent signaling. Mice were fed either a normal diet or 0.5% resveratrol diet. One week later, the right sciatic nerve was cut. The wet weight, mean fiber area, and amount of atrogin-1 and p62 proteins were examined in the gastrocnemius muscle at 14 days after denervation. The 0.5% resveratrol diet significantly prevented denervation-induced decreases in both the muscle weight and fiber atrophy. In addition, dietary resveratrol suppressed the denervation-induced atrogin-1 and p62 immunoreactivity. In contrast, 0.5% resveratrol supplementation did not significantly modulate the total protein amount of atrogin-1 or p62 in the denervated muscle of mice. Resveratrol supplementation significantly prevents muscle atrophy after denervation in mice, possibly due to the decrease in atrogin-1 and p62-dependent signaling.
Asunto(s)
Suplementos Dietéticos , Atrofia Muscular/tratamiento farmacológico , Estilbenos/administración & dosificación , Animales , Humanos , Ratones Endogámicos mdx , Desnervación Muscular/métodos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/fisiopatología , Resveratrol , Proteínas Ligasas SKP Cullina F-box/genética , Transducción de Señal/efectos de los fármacos , Factor de Transcripción TFIIH , Factores de Transcripción/genéticaRESUMEN
We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; P<.0001) associated with enhanced TNF-α (819.49 vs 357.02; P<.005) and IL-6 (3.84 vs 1.08; P<.0001). Prior, l-arginine supplementation attenuates neutrophil infiltration (5622; P<.0001), and also TNF-α (506.01; P<.05) and IL-6 (2.51, P<.05) levels. AG pretreatment mediated an inhibition of iNOS levels similar to levels found in RE group. RE animals displayed increased of atrogin-1 (1.9 fold) and MuRF-1 (3.2 fold) mRNA levels, reversed by l-arg supplementation [atrogin-1 (0.6 fold; P<.001); MuRF-1 (0.8-fold; P<.001)] at 24 hours post-RE. MyoD up-regulated levels were restricted to l-arg treated animals at 24 hours (2.8 vs 1.5 fold; P<.005) and 48 hours post-RE (2.4 vs 1.1 fold; P<.001). AG pretreatment reversed these processes at 24 hours [atrogin-1 (2.1 fold; P<.0001); MuRF-1 (2.5 fold; P<.0001); MyoD (1.4 fold)]. l-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair.
Asunto(s)
Arginina/administración & dosificación , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica , Animales , Guanidinas/administración & dosificación , Inflamación/genética , Interleucina-6/metabolismo , Masculino , Proteínas Musculares/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peroxidasa/metabolismo , Ratas Wistar , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.