Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 269: 115744, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086263

RESUMEN

A widely applied pesticide of azoxystrobin, is increasingly detected in the water environment. Concern has been raised against its potential detriment to aquatic ecosystems. It has been shown that exposure to azoxystrobin interfere with the locomotor behavior of zebrafish larvae. This study aims to investigate whether exposure to environmental levels of azoxystrobin (2 µg/L, 20 µg/L, and 200 µg/L) changes the behavior of male adult zebrafish. Herein, we evaluated behavioral response (locomotor, anxiety-like, and exploratory behaviors), histopathology, biochemical indicators, and gene expression in male adult zebrafish upon azoxystrobin exposure. The study showed that exposure to azoxystrobin for 42 days remarkably increased the locomotor ability of male zebrafish, resulted in anxiety-like behavior, and inhibited exploratory behavior. After treatment with 200 µg/L azoxystrobin, vasodilatation, and congestion were observed in male zebrafish brains. Exposure to 200 µg/L azoxystrobin notably elevated ROS level, MDA concentration, CAT activity, and AChE activity, while inhibiting SOD activity, GPx activity, ACh concentration, and DA concentration in male zebrafish brains. Moreover, the expression levels of genes related to the antioxidant, cholinergic, and dopaminergic systems were significantly changed. This suggests that azoxystrobin may interfere with the homeostasis of neurotransmitters by causing oxidative stress in male zebrafish brains, thus affecting the behavioral response of male zebrafish.


Asunto(s)
Pirimidinas , Estrobilurinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Masculino , Pez Cebra/metabolismo , Ecosistema , Estrés Oxidativo , Colinérgicos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
2.
Plant Dis ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971961

RESUMEN

This study characterized 52 isolates of Monilinia fructicola from peach and nectarine orchards for their multi-resistance patterns to thiophanate-methyl (TF), tebuconazole (TEB), and azoxystrobin (AZO) using in vitro sensitivity assays and molecular analysis. The radial growth of M. fructicola isolates was measured on media amended with a single discriminatory dose of 1 µg/ml for TF and AZO and 0.3 µg/ml for TEB. Cyt b, CYP51, and ß-tubulin were tested for point mutations that confer resistance to quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs), and methyl benzimidazole carbamates (MBCs), respectively. Eight phenotypes were identified including isolates with single, double, and triple in vitro resistance to QoI, MBC, and DMI fungicides. All resistant phenotypes to TF and TEB presented the H6Y mutation in ß-tubulin and the G641S mutation in CYP51. None of the point mutations typically linked to QoI resistance were present in the Monilinia isolates examined. Moreover, fitness of the M. fructicola phenotypes was examined in vitro and detached fruit assays. Phenotypes with single-resistance displayed equal fitness in in vitro and fruit assays compared to the wild-type. In contrast, the dual and triple-resistance phenotypes suffered fitness penalties based on osmotic sensitivity and aggressiveness on peach fruit. In this study, multiple resistance to MBC, DMI, and QoI fungicide groups was confirmed in M. fructicola. Results suggest that Monilinia populations with multiple resistance phenotypes are likely to be less competitive in the field than those with single resistance, thereby impeding their establishment over time and facilitating disease management.

3.
Plant Dis ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254848

RESUMEN

Rhizoctonia zeae was recently identified as the major Rhizoctonia species in corn and soybean fields in Nebraska and was shown to be pathogenic on corn and soybean seedlings. Fungicide seed treatments commonly used to manage seedling diseases include prothioconazole (demethylation inhibitor), fludioxonil (phenylpyrrole), sedaxane (succinate dehydrogenase inhibitor), and azoxystrobin (quinone outside inhibitor; QoI). To establish the sensitivity of R. zeae to these fungicides, we isolated this pathogen from corn and soybean fields in Nebraska during 2015 to 2017 and estimated the relative effective concentration for 50% inhibition (EC50) of a total of 91 R. zeae isolates from Nebraska and Illinois. Average EC50 for prothioconazole, fludioxonil, sedaxane, and azoxystrobin was 0.219, 0.099, 0.078, and > 100 µgml-1, respectively. In planta assays showed that azoxystrobin did not significantly reduce the disease severity on soybean (P > 0.05). The cytochrome b gene of R. zeae did not harbor any mutation known to confer QoI resistance and had a type-I intron directly after codon 143 suggesting that a G143A mutation is unlikely to evolve in this pathogen. For prothioconazole, fludioxonil, and sedaxane, EC50 of isolates did not differ significantly among years of collection (P > 0.05) and their single discriminatory concentrations were identified as 0.1 µgml-1. This is the first study to establish non-target site resistance of R. zeae to azoxystrobin and the sensitivity of R. zeae to commonly used seed treatment fungicides in Nebraska. This information will help to guide strategies for chemical control of R. zeae and monitor sensitivity shifts in future.

4.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125673

RESUMEN

The present study was aimed at assessing the impact of azoxystrobin-a fungicide commonly used in plant protection against pathogens (Amistar 250 SC)-on the soil microbiota and enzymes, as well as plant growth and development. The laboratory experiment was conducted in three analytical terms (30, 60, and 90 days) on sandy clay (pH-7.0). Azoxystrobin was applied to soil in doses of 0.00 (C), 0.110 (F) and 32.92 (P) mg kg-1 d.m. of soil. Its 0.110 mg kg-1 dose stimulated the proliferation of organotrophic bacteria and actinobacteria but inhibited that of fungi. It also contributed to an increase in the colony development index (CD) and a decrease in the ecophysiological diversity index (EP) of all analyzed groups of microorganisms. Azoxystrobin applied at 32.92 mg kg-1 reduced the number and EP of microorganisms and increased their CD. PP952051.1 Bacillus mycoides strain (P), PP952052.1 Prestia megaterium strain (P) bacteria, as well as PP952052.1 Kreatinophyton terreum isolate (P) fungi were identified in the soil contaminated with azoxystrobin, all of which may exhibit resistance to its effects. The azoxystrobin dose of 0.110 mg kg-1 stimulated the activity of all enzymes, whereas its 32.92 mg kg-1 dose inhibited activities of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease and stimulated the activity of catalase. The analyzed fungicide added to the soil at both 0.110 and 32.92 mg kg-1 doses inhibited seed germination and elongation of shoots of Lepidium sativum L., Sinapsis alba L., and Sorgum saccharatum L.


Asunto(s)
Fungicidas Industriales , Pirimidinas , Microbiología del Suelo , Estrobilurinas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , Pirimidinas/farmacología , Microbiota/efectos de los fármacos , Hongos/efectos de los fármacos , Suelo/química , Plantas/efectos de los fármacos , Plantas/microbiología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673760

RESUMEN

This study aimed to evaluate how the combined presence of the synthetic fungicide azoxystrobin (AZ) and the biosurfactant-producing Bacillus sp. Kol B3 influences the growth of the phytopathogenic fungus Fusarium sambucinum IM 6525. The results showed a noticeable increase in antifungal effectiveness when biotic and abiotic agents were combined. This effect manifested across diverse parameters, including fungal growth inhibition, changes in hyphae morphology, fungal membrane permeability and levels of intracellular reactive oxygen species (ROS). In response to the presence of Fusarium and AZ in the culture, the bacteria changed the proportions of biosurfactants (surfactin and iturin) produced. The presence of both AZ and/or Fusarium resulted in an increase in iturin biosynthesis. Only in 72 h old bacterial-fungal co-culture a 20% removal of AZ was noted. In the fungal cultures (with and without the addition of the bacteria), the presence of an AZ metabolite named azoxystrobin free acid was detected in the 48th and 72nd hours of the process. The possible involvement of increased iturin and ROS content in antifungal activity of Bacillus sp. and AZ when used together are also discussed. Biosurfactants were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Microscopy techniques and biochemical assays were also used.


Asunto(s)
Antifúngicos , Bacillus , Fusarium , Pirimidinas , Estrobilurinas , Tensoactivos , Estrobilurinas/farmacología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Bacillus/metabolismo , Tensoactivos/farmacología , Tensoactivos/metabolismo , Antifúngicos/farmacología , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana
6.
Ecotoxicology ; 32(1): 102-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36650308

RESUMEN

The use of fungicides in agriculture has been playing a role in the enhancement of agricultural yields through the control of pathogens causing serious diseases in crops. Still, adverse environmental and human health effects resulting from its application have been reported. In this study, the possibility of readjusting the formulation of a commercial product combining azoxystrobin and tebuconazole (active ingredients - AIs; Custodia®) towards environmentally safer alternative(s) was investigated. Specifically, the sensitivity of non-target aquatic communities to each AI was first evaluated by applying the Species Sensitivity Distributions (SSDs) approach. Then, mixtures of these AIs were tested in a non-target organism (Raphidocelis subcapitata) denoting sensitivity to both AIs as assessed from SSDs. The resulting data supported the design of the last stage of this study, where mixtures of those AIs at equivalent vs. alternative ratios and rates as in the commercial formulation were tested against two target fungal species: Pyrenophora teres CBS 123929 and Rhynchosporium secalis CBS 110524. The comparison between the sensitivity of non-target aquatic species and the corresponding efficacy towards target fungi revealed that currently applied mixture and rates of these AIs are generally environmentally safe (antagonistic interaction; concentrations below the EC1 for R. subcapitata and generally below the HC5 for aquatic non-target communities), but ineffective against target organisms (maximum levels of inhibition of 70 and 50% in P. teres CBS 123929 and R. secalis CBS 110524, respectively). Results additionally suggest a potentiation of the effects of the AIs by the other formulants added to the commercial product at tested rates. Overall, this study corroborates that commercial products can be optimized during design stages based on a systematic ecotoxicological testing for ingredient interactions and actual efficacy against targets. This could be a valuable pathway to reduce environmental contamination during transition to a more sustainable agricultural production.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/toxicidad , Estrobilurinas , Fungicidas Industriales/toxicidad , Hongos
7.
Pestic Biochem Physiol ; 195: 105556, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666592

RESUMEN

Azoxystrobin (AZO) is a broad-spectrum strobilurin fungicide widely used in agriculture. However, its use increases the possibility of co-occurrence with mycotoxins such as ochratoxin A (OTA), which poses a significant risk to human health. Therefore, it is imperative to prioritize the evaluation of the combined toxicity of these two compounds. To assess the combined effects of AZO and OTA, the response genes and phenotypes for AZO or OTA exposure were obtained by utilizing Comparative Toxicogenomics Database, and Database for Annotation, Visualization and Integrated Discovery was used for GO and KEGG pathway enrichment analysis. In addition, we provided in-vivo evidence that AZO and OTA, in isolation and combination, could disrupt a variety of biological processes, such as oxidative stress, inflammatory response, apoptosis and thyroid hormone regulation under environmentally relevant concentrations. Notably, our findings suggest that the combined exposure group exhibited greater toxicity, as evidenced by the expression of various markers associated with the aforementioned biological processes, compared to the individual exposure group, which presents potential targets for the underlying mechanisms of induced toxicity. This study provides a novel methodological approach for exploring the mechanism of combined toxicity of a fungicide and a mycotoxin, which can shed light for conducting risk assessment of foodborne toxins.


Asunto(s)
Fungicidas Industriales , Ocratoxinas , Humanos , Estrobilurinas , Fungicidas Industriales/toxicidad , Ocratoxinas/toxicidad
8.
Pestic Biochem Physiol ; 189: 105313, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549825

RESUMEN

Picolinamide and strobilurin fungicides bind to the Qi and Qo sites on cytochrome b, respectively, and target many of the same plant pathogens. Using Saccharomyces cerevisiae as a model system, we explore effects of amino acid changes at each site on sensitivity to a fungicide acting at the opposite site and examine the relationship between altered sensitivity and growth penalty. In addition, double mutants containing the G143A or F129L mutations responsible for strobilurin resistance in combination with Qi site mutations that confer resistance to picolinamides are characterized in terms of their sensitivity to QiI and QoI fungicides and growth rate. Mutants containing amino acid changes at the Qo site varied in their growth rate and sensitivity to the picolinamide CAS-649, and increased sensitivity was associated with a greater growth penalty. Conversely, changes at the Qi site affected sensitivity to azoxystrobin and also showed a correlation between increased sensitivity and reduced growth. There was no overall correlation between resistance to azoxystrobin and CAS-649 among mutants, however negative cross-resistance occurred in the case of mutations which conferred resistance to either compound and also carried a growth penalty. These results suggest the use of QoI fungicides to delay the emergence of pathogen resistance to QiIs, and vice versa. Double mutants containing G143A or F129L in combination with Qi site changes N31K, G37C/V or L198F that cause resistance to picolinamides generally exhibited lower resistance factors for both azoxystrobin and CAS-649 than corresponding resistant strains with a single mutation. Reduced growth was observed for all F129L-containing double mutants, whereas the growth rate of double mutants containing G143A was significantly reduced only by the Qi site mutations N31K and G37V that confer a larger growth penalty. Our results suggest that resistance to picolinamides in pathogens could emerge more readily in a strobilurin-sensitive genetic background than in a strobilurin-resistant one.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Estrobilurinas , Saccharomyces cerevisiae/genética , Mutación , Farmacorresistencia Fúngica/genética
9.
Plant Dis ; 107(3): 861-869, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35997668

RESUMEN

Jujube (Ziziphus jujuba) is cultivated across South Korea because of its medicinal and economic value. It is used as a sweetener in jam, tea, and snacks and a garnish in many cuisines. Anthracnose caused by Colletotrichum spp. accounts for huge economic losses for jujube growers. In 2019 and 2020, severe anthracnose was observed in the jujube-growing areas of South Korea. The infected fruit displayed small, water-soaked, sunken, circular spots. Infected fruit were collected from different commercial orchards of Boeungun and Gyeongsan regions of South Korea, and putative causal agents were isolated on potato dextrose agar. Based on the morphological and molecular characteristics, the fungal isolates were identified as Colletotrichum gloeosporioides sensu stricto and C. nymphaeae. The pathogenicity of these isolates was confirmed by inoculating a conidial suspension (1 × 106 conidia ml-1) on healthy fruit. The in vitro sensitivity of the fungal isolates to tebuconazole, carbendazim, and azoxystrobin was also tested. All isolates showed high sensitivity to azoxystrobin in terms of mycelial growth inhibition (half maximal effective concentration value of 0.01 to 0.6 µg/ml). To the best of our knowledge, this is also the first report of jujube anthracnose caused by C. nymphaeae in South Korea.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Ziziphus , Fungicidas Industriales/farmacología , Colletotrichum/genética , Frutas , República de Corea
10.
Plant Dis ; 107(4): 1012-1021, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36410014

RESUMEN

Frogeye leaf spot (FLS) is a foliar disease of soybean (Glycine max) caused by Cercospora sojina. Application of fungicide products that contain quinone outside inhibitor (QoI) active ingredients has been one of the major tools used in the management of this disease, but, since 2010, QoI-resistant C. sojina isolates have been confirmed in over 20 states in the United States, including Indiana. In summer 2019 and 2020, 406 isolates of C. sojina were collected from 32 counties across Indiana and screened for QoI resistance using a PCR-restriction fragment length polymorphism (RFLP) method. An in vitro fungicide sensitivity test was also performed on a subset of isolates to evaluate their sensitivity to three QoI fungicides: azoxystrobin, pyraclostrobin, and picoxystrobin. A discriminatory dose of picoxystrobin was established as 1 µg/ml by testing five concentrations (0.001, 0.01, 0.1, 1, and 10 µg/ml). QoI-resistant isolates were found in 29 counties, and 251 of the 406 isolates (61.8%) were confirmed to be resistant to QoI fungicides based on PCR-RFLP results. Partial nucleotide sequences of the cytochrome b gene from four resistant and four sensitive isolates corroborated the presence and absence, respectively, of the G143A mutation. Results from the sensitivity assays with discriminatory doses of azoxystrobin (1 µg/ml) and pyraclostrobin (0.1 µg/ml) also supported the findings from the PCR-RFLP assay, because all QoI-resistant isolates were inhibited less than 50% relative to a no-fungicide control when exposed to these doses. Resistant isolates harboring the G143A mutation also exhibited resistance to picoxystrobin. The effective concentrations to inhibit mycelial growth by 50% relative to the nonamended control (EC50) in QoI-sensitive isolates ranged from 0.087 to 0.243 µg/ml, with an overall mean of 0.152 µg/ml, while EC50 values in QoI-resistant isolates were established as >10 µg/ml for picoxystrobin. Results from this study indicated that QoI-resistant C. sojina isolates are spread throughout Indiana and exhibit cross-resistance to QoI fungicides.


Asunto(s)
Fungicidas Industriales , Glycine max , Estados Unidos , Indiana , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Quinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA