RESUMEN
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Asunto(s)
Hipersensibilidad , Neuralgia , Ratas , Masculino , Ratones , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipersensibilidad/metabolismoRESUMEN
A sensitive and selective liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of dual PI3K/BRD4 inhibitor SF2523 in mouse plasma. The analysis was performed on a UPLC system connected to a Shimadzu 8060 mass spectrometer by electrospray ionization in positive multiple reaction monitoring mode. Chromatographic separation was carried out on an ACE Excel C18 column with a gradient elution containing 0.1% formic acid and methanol as the mobile phase. The linearity was conducted in the concentration range 0.1-500 ng/ml for SF2523 in 100 µl of plasma. The inter- and intra-batch precision (RSD) were both lower than 13.5%, with the accuracy (percentage bias) ranging from -10.03 to 11.56%. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. SF2523 was highly bound to mouse plasma proteins (>95% bound). Utilizing mouse S9 fractions, a total of seven phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. Metabolite identification included analysis of retention behaviors, molecular weight changes and MS/MS fragment patterns of SF2523 and the metabolites. This newly developed and validated method allows the rapid and easy determination of the SF2523 concentration with high sensitivity in a low sample volume and can be applied to future pre-clinical studies.
Asunto(s)
Proteínas Nucleares , Espectrometría de Masas en Tándem , Ratones , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Fosfatidilinositol 3-Quinasas , Cromatografía Líquida de Alta Presión/métodos , Unión Proteica , Factores de Transcripción , Proteínas Sanguíneas , Reproducibilidad de los ResultadosRESUMEN
Hepatocellular carcinoma (HCC) is one of the commonest lethal malignancies worldwide, and often diagnosed at an advanced stage, without any curative therapy. Immune checkpoint blockers targeting the programmed death receptor 1 (PD-1) have shown impressive antitumor activity in patients with advanced-stage HCC, while the response rate is only 30%. Inducible PD-L1 overexpression may result in a lack of response to cancer immunotherapy, which is attributed to a mechanism of adaptive immune resistance. Our study investigated that the overexpression of PD-L1 promoted the invasion and migration of liver cancer cells in vitro, and the induced overexpression of PD-L1 in the tumor microenvironment could weaken the effects of anti-PD-1 immunotherapy in a BALB/c mouse model of liver cancer. CPI-203, a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor, which can potently inhibit PD-L1 expression in vitro and in vivo, combined with PD-1 antibody improved the response to immunotherapy in a liver cancer model. Cell transfection and chromatin immunoprecipitation assay manifested that BRD4 plays a key role in PD-L1 expression; CPI-203 can inhibit PD-L1 expression by inhibiting the BRD4 occupation of the PD-L1 promoter region. This study indicates a potential clinical immunotherapy method to reduce the incidence of clinical resistance to immunotherapy in patients with HCC.
Asunto(s)
Acetamidas/administración & dosificación , Azepinas/administración & dosificación , Antígeno B7-H1/genética , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Acetamidas/farmacología , Animales , Azepinas/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.
Asunto(s)
Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neoplasias del Sistema Nervioso Periférico/tratamiento farmacológico , Neoplasias del Sistema Nervioso Periférico/genética , Complejo Represivo Polycomb 2/genética , Animales , Biomarcadores de Tumor , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diferenciación Celular/genética , Línea Celular Tumoral , Perros , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Transgénicos , Mutación , Neoplasias de la Vaina del Nervio/patología , Cresta Neural/patología , Neoplasias del Sistema Nervioso Periférico/patología , Especificidad de la Especie , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Pez CebraRESUMEN
Bromodomain and extra-terminal domain (BET) protein plays an important role in epigenetic regulation, and the regulation of disruption contributes to the pathogenesis of cancer and inflammatory disease. With the goal of discovering novel BET inhibitors, especially BRD4 inhibitors, we designed and synthesized several compounds starting from our previously reported pyrido-benzodiazepinone derivative 4 to enhance BRD4 inhibitory activity while avoiding hERG inhibition. Molecular docking studies and structure-activity relationship studies led to the identification of 9-fluorobenzo[f]pyrido[4,3-b][1,4]oxazepin-10-one derivative 43, which exhibited potent BRD4 inhibitory activity with excellent potency in imiquimod-induced psoriasis model mice.
Asunto(s)
Proteínas del Tejido Nervioso/antagonistas & inhibidores , Oxazepinas/química , Oxazepinas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Modelos Moleculares , Estructura Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/clasificación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxazepinas/administración & dosificación , Oxazepinas/síntesis química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Despite the recent therapeutic progress, the prognoses of diffuse large B-cell lymphomas (DLBCLs) that concomitantly overexpress c-MYC and BCL2, i.e., double hit lymphoma (DHL) and double expressing lymphoma (DEL), remain poor. This study examined triple targeting of c-MYC, BCL2 and the B-cell receptor (BCR) signaling pathway for DHL and DEL. We first used AZD5153, a novel bivalent inhibitor for bromodomain-containing 4 (BRD4), in DHL- and DEL-derived cell lines, because BRD4 regulates disease type-oriented key molecules for oncogenesis. AZD5153 was more effective than conventional monovalent BRD4 inhibitors, JQ1 and I-BET151, in inhibiting cell proliferation of a DHL-derived cell line and two DEL-derived cell lines, with at least 10-fold lower half growth inhibitory concentrations. AZD5153 caused G1/S cell cycle blockade, while the apoptosis-inducing effect was relatively modest. At the molecular level, AZD5153 was potent in downregulating various molecules for oncogenesis, such as c-MYC, AKT2 and MAP3K; those involved in the BCR signaling pathway, such as CD19, BLNK and CD79B; and those associated with B-cell development, such as IKZF1, IKZF3, PAX5, POU2AF1 and EBF1. In contrast, AZD5153 did not decrease anti-apoptotic BCL2 proteins, and did not activate pro-apoptotic BH3-only proteins, except BAD. To augment cell death induction, we added a novel BH3-mimicking BCL2 inhibitor AZD4320 to AZD5153, and found that these two agents had a mostly synergistic antitumor effect by increasing cells undergoing apoptosis in all three cell lines. These results provide a rationale for dual targeting of BRD4 and BCL2 using AZD5153 and AZD4320 as a therapeutic strategy against DHL and DEL.
Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 2 Anillos/farmacología , Linfoma de Células B/tratamiento farmacológico , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Pirazoles , Piridazinas , Células Tumorales CultivadasRESUMEN
Bromodomain-containing protein 4 (BRD4) is a new therapeutic target for the treatment of diseases including cardiovascular diseases, cancer, inflammation and central nervous system (CNS) disorders. In this study, we introduced the pharmacophore of fibrates to a BRD4 inhibitor, RVX-208, to design dual-active hypolipidemic compounds, and found that some of new analogues showed favorable hypolipidemic activities. Synthetic accessibility towards this class of compounds optimized RVX-208 as well as would supply more thoughts on hypolipidemic drugs.
Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Hipolipemiantes/uso terapéutico , Factores de Transcripción/metabolismo , Humanos , Hipolipemiantes/farmacología , Factores de Transcripción/antagonistas & inhibidoresRESUMEN
As an epigenetic reader, BRD4 regulates the transcription of important downstream genes that are essential for the survival of tumor cells. Small molecular inhibitors targeting the first bromodomain of BRD4 (BRD4-BD1) have showed promising potentials in the therapies of BRD4-related cancers. Through AlphaScreen-based high-throughput screening assay, a novel small molecular inhibitor was identified, and named DCBD-005, which inhibited the binding between BRD4-BD1 and acetylated lysines with an IC50 value of 0.81±0.03µM. The compound DCBD-005 effectively inhibited the viability, caused cell cycle arrest, and induced apoptosis in human leukemia MV4-11 cells. Moreover, the crystal structure of compound DCBD-005 with the BRD4-BD1 was determined at 1.72Å resolution, which revealed the binding mechanism of the leading compound, and also provided solid basis for further structure-based optimization. These results indicated that this novel BRD4-BD1 inhibitor DCBD-005 is promising to be developed into a drug candidate in the treatment of BRD4-related diseases.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
RESUMEN
Objective: To investigate the effects of bromine domain protein 4 (BRD4) inhibitor JQ1 on the expression profile of super-enhancer-related lncRNAs (SE-lncRNAs) and mRNAs in cervical cancer (CC) HeLa-cells. Methods: The CCK8 method was implemented to detect the inhibitory effect of JQ1 on HeLa cells and explore the best inhibitory concentration. Whole transcriptome sequencing was performed to detect the changes of lncRNAs and mRNAs expression profiles in cells of the JQ1 treatment group and control group, respectively. The differentially expressed SE-lncRNAs were obtained by matching, while the co-expressed mRNAs were obtained by Pearson correlation analysis. Results: The inhibitory effect of JQ1 on HeLa cell proliferation increased significantly with increasing concentration and treatment time (P < 0.05). Under the experimental conditions of three concentrations of 0.01, 0.1 and 1 µmol/L of JQ1 on HeLa cells at 24, 48, 72 and 120 h, 1 µmol/L of JQ1 at 72 and 120 h had the same cell viability and the strongest cell proliferation inhibition. In order to understand the inhibitory mechanism of JQ1 on HeLa cells, this study analyzed the expression profile differences from the perspective of SE-lncRNAs and mRNAs. A total of 162 SE-lncRNAs were identified, of which 8 SE-lncRNAs were down-regulated and seven SE-lncRNAs were up-regulated. A total of 418 differentially expressed mRNAs related to SE-lncRNAs were identified, of which 395 mRNAs had positive correlation with 12 SE-lncRNAs and 408 mRNAs had negative correlation with 15 SE-lncRNAs. Conclusion: JQ1 can significantly inhibit the proliferation of HeLa cells and affect the expression profile of SE-lncRNAs and mRNAs.
Asunto(s)
ARN Largo no Codificante , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Proteínas Nucleares/genética , Factores de Transcripción/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genéticaRESUMEN
BACKGROUND: Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS: Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS: Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS: Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
RESUMEN
Ovarian cancer, a significant contributor to cancer-related mortality, exhibits limited responsiveness to hormonal therapies targeting the estrogen receptor (ERα). This study aimed to elucidate the mechanisms behind ERα resistance to the therapeutic drug Fulvestrant (ICI182780 or ICI). Notably, compared to the cytoplasmic version, nuclear ERα was minimally degraded by ICI, suggesting a mechanism for drug resistance via the protective confines of the nuclear substructures. Of these substructures, we identified a 1.3MDa Megacomplex comprising transcription factors ERα, FOXA1, and PITX1 using size exclusion chromatography (SEC) in the ovarian cancer cell line, PEO4. ChIP-seq revealed these factors colocalized at 6,775 genomic positions representing sites of Megacomplex formation. Megacomplex ERα exhibited increased resistance to degradation by ICI compared to cytoplasmic and nuclear ERα. A small molecule inhibitor of active chromatin and super-enhancers, JQ1, in combination with ICI significantly enhanced ERα degradation from Megacomplex as revealed by SEC and ChIP-seq. Interestingly, this combination degraded both the cytoplasmic as well as nuclear ERa. Pathway enrichment analysis showed parallel results for RNA-seq gene sets following Estradiol, ICI, or ICI plus JQ1 treatments as those defined by Megacomplex binding identified through ChIP-seq. Furthermore, similar pathway enrichments were confirmed in mass-spec analysis of the Megacomplex macromolecule fractions after modulation by Estradiol or ICI. These findings implicate Megacomplex in ERα-driven ovarian cancer chromatin regulation. This combined treatment strategy exhibited superior inhibition of cell proliferation and viability. Therefore, by uncovering ERα's resistance within the Megacomplex, the combined ICI plus JQ1 treatment elucidates a novel drug treatment vulnerability.
RESUMEN
Medulloblastoma (MB) is a malignant pediatric brain tumor which shows upregulation of MYC and sonic hedgehog (SHH) signaling. SHH inhibitors face acquired resistance, which is a major cause of relapse. Further, direct MYC oncogene inhibition is challenging, inhibition of MYC upstream insulin-like growth factor/ phosphatidylinositol-4,5-bisphosphate 3-kinase (IGF/PI3K) is a promising alternative. While PI3K inhibition activates resistance mechanisms, simultaneous inhibition of bromodomain-containing protein 4 (BRD4) and PI3K can overcome resistance. We synthesized a new molecule 8-(2,3-dihydrobenzo[b] [1, 4] dioxin-6-yl)-2-morpholino-4H-chromen-4-one (MDP5) that targets both BRD4 and PI3K pathways. We used X-ray crystal structures and a molecular modeling approach to confirm the interactions between MDP5 with bromo domains (BDs) from both BRD2 and BRD4, and molecular modeling for PI3K binding. MDP5 was shown to inhibit target pathways and MB cell growth in vitro and in vivo. MDP5 showed higher potency in DAOY cells (IC50 5.5 µM) compared to SF2523 (IC50 12.6 µM), and its IC50 values in HD-MB03 cells were like SF2523. Treatment of MB cells with MDP5 significantly decreased colony formation, increased apoptosis, and halted cell cycle progression. Further, MDP5 was well tolerated in NSG mice bearing either xenograft or orthotopic MB tumors at the dose of 20 mg/kg, and significantly reduced tumor growth and prolonged animal survival.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Ratones , Animales , Factores de Transcripción , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Hedgehog , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , Proteínas de Ciclo CelularRESUMEN
Bromodomain protein 4 (BRD4) is an attractive epigenetic target that regulating diverse cellular processes, and the discovery of dual-target inhibitors including BRD4 is an effective approach in cancer treatment to increase potency and reduce drug resistance. Based on the multifunctional drug development strategy, a series of new derivatives of nitrooxy (ONO2) or furoxan (1,2,5-oxadiazole 2-oxide) with BRD4 inhibitor capable of inhibiting BRD4 and simultaneously releasing NO were designed and synthesized. When NO concentrations were measured with Griess reagent under physiological conditions, all compounds released NO at micromolar levels, reaching effective antitumor concentrations. Biological studies showed that the most potent BRD4/NO hybrid 11a exhibited good BRD4 inhibitory activity and selectivity. Further mechanistic studies revealed that 11a significantly decreased the expression of BRD4 and c-Myc, as well as induced cellular apoptosis and autophagic cell death both in vitro and in vivo. In summary, we optimized the chimeric BRD4-inhibitor/NO-donor based on our previous studies, and it should be a lead compound for targeted therapy of OC (ovarian cancer) in the future. This interesting strategy could expand the usage of BRDi in human malignancies and endogenous gastro-transmitters.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Relación Estructura-Actividad , Proteínas Nucleares , Óxido Nítrico/farmacología , Proteínas de Ciclo Celular , Ensayos de Selección de Medicamentos Antitumorales , Diseño de Fármacos , Proliferación Celular , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Pirimidinas/farmacologíaRESUMEN
Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.
Asunto(s)
Proteínas Nucleares , Osteoartritis , Animales , Ratones , Ciclooxigenasa 2 , Inflamación , Interleucina-6 , Osteoartritis/tratamiento farmacológico , Especies Reactivas de Oxígeno , Factores de Transcripción , Proteínas que Contienen Bromodominio/antagonistas & inhibidoresRESUMEN
BRD4 inhibitors have demonstrated promising potential in cancer therapy. However, their therapeutic efficacy in breast cancer varies depending on the breast cancer subtype, particularly in the treatment of TNBC. In this study, we designed and synthesized 94 derivatives of 4-(3-(3,5-dimethylisoxazol-4-yl)benzyl)phthalazin-1(2H)-one to evaluate their inhibitory activities against BRD4. Notably, compound DDT26 exhibited the most potent inhibitory effect on BRD4, with an IC50 value of 0.237 ± 0.093 µM. DDT26 demonstrated significant anti-proliferative activity against both TNBC cell lines and MCF-7 cells. Intriguingly, the phthalazinone moiety of DDT26 mimicked the PAPR1 substrate, resulting in DDT26 displaying a moderate inhibitory effect on PARP1 with an IC50 value of 4.289 ± 1.807 µM. Further, DDT26 was shown to modulate the expression of c-MYC and γ-H2AX, induce DNA damage, inhibit cell migration and colony formation, and arrest the cell cycle at the G1 phase in MCF-7 cells. Our findings present potential lead compounds for the development of potent anti-breast cancer agents targeting BRD4.
RESUMEN
Bromodomain-containing protein 4 (BRD4) inhibitors have been clinically developed to treat acute myeloid leukemia (AML), but their application is limited by the possibility of drug resistance, which is reportedly associated with the activation of the WNT/ß-catenin pathway. Meanwhile, homoharringtonine (HHT), a classic antileukemia drug, possibly inhibits the WNT/ß-catenin pathway. In this study, we attempted to combine a novel BRD4 inhibitor (ACC010) and HHT to explore their synergistic lethal effects in treating AML. Here, we found that co-treatment with ACC010 and HHT synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle in FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)-positive AML cells in vitro, and significantly inhibiting AML progression in vivo. Mechanistically, ACC010 and HHT cooperatively downregulated MYC and inhibited FLT3 activation. Further, when HHT was added, ACC010-resistant cells demonstrated a good synergy. We also extended our study to the mouse BaF3 cell line with FLT3-inhibitor-resistant FLT3-ITD/tyrosine kinase domain mutations and AML cells without FLT3-ITD. Collectively, our results suggested that the combination treatment of ACC010 and HHT might be a promising strategy for AML patients, especially those carrying FLT3-ITD.
Asunto(s)
Leucemia Mieloide Aguda , beta Catenina , Animales , Ratones , Apoptosis , beta Catenina/genética , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/genética , Homoharringtonina/farmacología , Homoharringtonina/uso terapéutico , Leucemia Mieloide Aguda/genética , Mutación/genética , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción/genética , HumanosRESUMEN
BACKGROUND: Diffuse alveolar hemorrhage (DAH) is a serious complication that can arise from systemic lupus erythematosus (SLE) and other autoimmune diseases. While current treatments for DAH have limitations and adverse side effects, recent evidence suggests that inflammatory macrophages play a crucial role in the development of DAH. In this study, we investigated Mivebresib, a BET protein-bromodomain-containing protein 4 (BRD4) inhibitor, as a potential treatment for DAH. RESULTS: Our findings show that Mivebresib effectively protected C57BL/6J mice against pristane-induced DAH by inhibiting the migration and polarization of monocytes and macrophages, as well as pathogenic B and T cells. Specifically, Mivebresib modified the distribution of leukocytes, impeded the polarization of inflammatory macrophages, and reduced the frequency of CD19 + CD5 + B cells in the lungs of pristane-treated mice. Furthermore, in vitro experiments demonstrated that Mivebresib inhibited LPS-induced M1 polarization of macrophages and the expression of pro-inflammatory cytokines, M1 marker genes, and chemokines-chemokine receptors while thwarting the secretion of IL-6 and TNF-α. Transcriptomic analysis suggested and experiments comfimed that Mivebresib inhibits M1 polarization via interrupting the p300/BRD4/HIF1A axis. CONCLUSIONS: Our study demonstrates that Mivebresib has therapeutic potential for the life-threatening complication of DAH caused by SLE. By inhibiting macrophage polarization and the infiltration of inflammatory cells, Mivebresib may offer a promising treatment option for patients suffering from this disease.
Asunto(s)
Enfermedades Pulmonares , Lupus Eritematoso Sistémico , Animales , Ratones , Monocitos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/tratamiento farmacológico , Enfermedades Pulmonares/patología , Hemorragia/patologíaRESUMEN
PURPOSE: Berbamine (Ber), a bioactive constituent extracted from a traditional Chinese medicinal herb, has been shown to exhibit broad inhibitory activity on a panel of cancer cell types. However, its effects and the underlying molecular mechanisms on gastric cancer (GC) remain poorly understood. METHODS: The anti-growth activity of Ber on two GC cell lines and normal gastric epithelial cell line were evaluated using MTS and clone formation assay. Flow cytometry analysis was employed to evaluate the cell cycle distribution and apoptosis of GC cells. Western blot and quantitative PCR (qPCR) analysis were employed to investigate the anti-GC mechanism of Ber. The inhibitory activity and binding affinity of Ber against BRD4 were evaluated by homogeneous time-resolved fluorescence (HTRF) and surface plasmon resonance (SPR) assay, respectively. Molecular docking and molecular simulations were conducted to predict the interaction mode between BRD4 and Ber. RESULTS: The results demonstrated that Ber reduced the proliferation of GC cell lines SGC-7901 and BGC-823 and induced cell cycle arrest and apoptosis. Mechanistically, Ber was identified as a novel natural-derived BRD4 inhibitor through multiple experimental assay, and its anti-GC activity was probably mediated by BRD4 inhibition. Molecular modeling studies suggested that Ber might bind to BRD4 primarily through hydrophobic interactions. CONCLUSION: Our study uncovered the underlying anti-GC activity of Ber in vitro and suggested that Ber holds promise as a potential lead compound in the discovery of novel BRD4 inhibitors.
Asunto(s)
Bencilisoquinolinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Factores de Transcripción/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Transducción de SeñalRESUMEN
Sepsis has long been a major health problem worldwide. It threatens the lives of hospitalized patients and has been one of the leading causes of death in hospitalized patients over the past decades. BRD4 has been regarded as a potential target for sepsis therapy, for its critical role in the transcriptional expression of NF-κB pathway-dependent inflammatory factors. In this study, compound 1 was obtained through virtual screening, and candidate compound 27 was obtained through several rounds of iterative SAR analysis. 27 decreased LPS-induced NO production and expression of the pro-inflammatory factors IL-6, IL-1ß and TNF-α. In vivo, 27 effectively protected mice from LPS-induced sepsis, increased survival rate and decreased the level of pro-inflammatory factors in serum. Collectively, we reported here 27, a BRD4 inhibitor with a new scaffold, as a potential candidate for the treatment of sepsis.