Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2221438120, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972448

RESUMEN

Converting anthropogenic CO2 to value-added products using renewable energy has received much attention to achieve a sustainable carbon cycle. CO2 electrolysis has been extensively investigated, but the products have been limited to some C1-3 products. Here, we report the integration of CO2 electrolysis with microbial fermentation to directly produce poly-3-hydroxybutyrate (PHB), a microbial polyester, from gaseous CO2 on a gram scale. This biohybrid system comprises electrochemical conversion of CO2 to formate on Sn catalysts deposited on a gas diffusion electrode (GDE) and subsequent conversion of formate to PHB by Cupriavidus necator cells in a fermenter. The electrolyzer and the electrolyte solution were optimized for this biohybrid system. In particular, the electrolyte solution containing formate was continuously circulated through both the CO2 electrolyzer and the fermenter, resulting in the efficient accumulation of PHB in C. necator cells, reaching a PHB content of 83% of dry cell weight and producing 1.38 g PHB using 4 cm2 Sn GDE. This biohybrid system was further modified to enable continuous PHB production operated at a steady state by adding fresh cells and removing PHB. The strategies employed for developing this biohybrid system will be useful for establishing other biohybrid systems producing chemicals and materials directly from gaseous CO2.

2.
Appl Environ Microbiol ; 90(8): e0060324, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39058034

RESUMEN

Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE: The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.


Asunto(s)
Halomonas , Poliésteres , Halomonas/genética , Halomonas/metabolismo , Halomonas/crecimiento & desarrollo , Poliésteres/metabolismo , Polihidroxialcanoatos/metabolismo , Polihidroxialcanoatos/biosíntesis , Utah , Hidroxibutiratos/metabolismo , Plásticos Biodegradables/metabolismo , Lagos/microbiología , Genoma Bacteriano , Polihidroxibutiratos
3.
Anal Biochem ; 685: 115390, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951454

RESUMEN

To alleviate environmental problems caused by using conventional plastics, bioplastics have garnered significant interest as alternatives to petroleum-based plastics. Despite possessing better degradability traits compared to traditional plastics, the degradation of bioplastics still demands a longer duration than initially anticipated. This necessitates the utilization of degradation strains or enzymes to enhance degradation efficiency, ensuring timely degradation. In this study, a novel screening method to identify bioplastic degraders faster was suggested to circumvent the time-consuming and laborious characteristics of solid-based plate assays. This liquid-based colorimetric method confirmed the extracellular esterase activity with p-nitrophenyl esters. It eliminated the needs to prepare plastic emulsion plates at the initial screening system, shortening the time for the overall screening process and providing more quantitative data. p-nitrophenyl hexanoate (C6) was considered the best substrate among the various p-nitrophenyl esters as substrates. The screening was performed in liquid-based 96-well plates, resulting in the discovery of a novel strain, Bacillus sp. SH09, with a similarity of 97.4% with Bacillus licheniformis. Furthermore, clear zone assays, degradation investigations, scanning electron microscopy, and gel permeation chromatography were conducted to characterize the biodegradation capabilities of the new strain, the liquid-based approach offered a swift and less labor-intensive option during the initial stages.


Asunto(s)
Esterasas , Plásticos , Plásticos/química , Esterasas/química , Ensayos Analíticos de Alto Rendimiento , Colorimetría , Biopolímeros
4.
Biotechnol Bioeng ; 121(1): 139-156, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37638652

RESUMEN

Species of bacteria from the genus Cupriavidus are known, in part, for their ability to produce high amounts of poly-hydroxybutyrate (PHB) making them attractive candidates for bioplastic production. The native synthesis of PHB occurs during periods of metabolic stress, and the process regulating the initiation of PHB accumulation in these organisms is not fully understood. Screening an RB-TnSeq transposon library of Cupriavidus basilensis 4G11 allowed us to identify two genes of an apparent, uncharacterized two-component system, which when omitted from the genome enable increased PHB productivity in balanced, nonstress growth conditions. We observe average increases in PHB productivity of 56% and 41% relative to the wildtype parent strain upon deleting each gene individually from the genome. The increased PHB phenotype disappears, however, in nitrogen-free unbalanced growth conditions suggesting the phenotype is specific to fast-growing, replete, nonstress growth. Bioproduction modeling suggests this phenotype could be due to a decreased reliance on metabolic stress induced by nitrogen limitation to initiate PHB production in the mutant strains. Due to uncertainty in the two-component system's input signal and regulon, the mechanism by which these genes impart this phenotype remains unclear. Such strains may allow for the use of single-stage, continuous bioreactor systems, which are far simpler than many PHB bioproduction schemes used previously, given a similar product yield to batch systems in such a configuration. Bioproductivity modeling suggests that omitting this regulation in the cells may increase PHB productivity up to 24% relative to the wildtype organism when using single-stage continuous systems. This work expands our understanding of the regulation of PHB accumulation in Cupriavidus, in particular the initiation of this process upon transition into unbalanced growth regimes.


Asunto(s)
Cupriavidus necator , Cupriavidus , Hidroxibutiratos/metabolismo , Cupriavidus/genética , Reactores Biológicos , Nitrógeno/metabolismo , Poliésteres/metabolismo
5.
Biotechnol Bioeng ; 121(5): 1486-1502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343183

RESUMEN

Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.


Asunto(s)
Chlorella vulgaris , Microalgas , Purificación del Agua , Humanos , Aguas Residuales , Biocombustibles , Biomasa
6.
Microb Cell Fact ; 23(1): 187, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951813

RESUMEN

BACKGROUND: Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION: Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.


Asunto(s)
Polihidroxialcanoatos , Aguas Residuales , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Fermentación , Bacterias/metabolismo , Biodegradación Ambiental
7.
Microb Cell Fact ; 23(1): 56, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368375

RESUMEN

BACKGROUND: Polyhydroxybutyrate (PHB) has emerged as a promising eco-friendly alternative to traditional petrochemical-based plastics. In the present study, we isolated and characterized a new strain of Salinicola salarius, a halophilic bacterium, from the New Suez Canal in Egypt and characterized exclusively as a potential PHB producer. Further genome analysis of the isolated strain, ES021, was conducted to identify and elucidate the genes involved in PHB production. RESULTS: Different PHB-producing marine bacteria were isolated from the New Suez Canal and characterized as PHB producers. Among the 17 bacterial isolates, Salinicola salarius ES021 strain showed the capability to accumulate the highest amount of PHB. Whole genome analysis was implemented to identify the PHB-related genes in Salinicola salarius ES021 strain. Putative genes were identified that can function as phaCAB genes to produce PHB in this strain. These genes include fadA, fabG, and P3W43_16340 (encoding acyl-CoA thioesterase II) for PHB production from glucose. Additionally, phaJ and fadB were identified as key genes involved in PHB production from fatty acids. Optimization of environmental factors such as shaking rate and incubation temperature, resulted in the highest PHB productivity when growing Salinicola salarius ES021 strain at 30°C on a shaker incubator (110 rpm) for 48 h. To maximize PHB production economically, different raw materials i.e., salted whey and sugarcane molasses were examined as cost-effective carbon sources. The PHB productivity increased two-fold (13.34 g/L) when using molasses (5% sucrose) as a fermentation media. This molasses medium was used to upscale PHB production in a 20 L stirred-tank bioreactor yielding a biomass of 25.12 g/L, and PHB of 12.88 g/L. Furthermore, the produced polymer was confirmed as PHB using Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. CONCLUSIONS: Herein, Salinicola salarius ES021 strain was demonstrated as a robust natural producer of PHB from agro-industrial wastes. The detailed genome characterization of the ES021 strain presented in this study identifies potential PHB-related genes. However, further metabolic engineering is warranted to confirm the gene networks required for PHB production in this strain. Overall, this study contributes to the development of sustainable and cost-effective PHB production strategies.


Asunto(s)
Halomonadaceae , Residuos Industriales , Polihidroxibutiratos , Plásticos , Polímeros , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
8.
Environ Res ; 244: 117949, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109961

RESUMEN

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Asunto(s)
Compostaje , Plásticos , Humanos , Biopolímeros/química , Tecnología , Residuos Industriales
9.
Environ Res ; 251(Pt 1): 118622, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442816

RESUMEN

Bioplastics have been used as alternatives to conventional petroleum-based plastics to lessen the burdens on marine and terrestrial environments due to their non-biodegradability and toxicity. However, recent studies have shown that not all bioplastics may be environmentally friendly. Microalgae, such as Spirulina that do not require arable land, have been identified as a potential bioplastic source. In this study, cradle-to-gate life cycle assessment (LCA) was carried out in openLCA program using the Agribalyse database, to evaluate the environmental impacts of Spirulina bioplastic, formed from plasticization of Spirulina powder with glycerol. Two processes were created for the inventories of (i) Spirulina powder and (ii) Spirulina bioplastic, where the output of the former served as an input for the latter. The extruded bioplastic sheets were food-grade and could be used as edible packaging materials. The bioplastic was also compared to conventional plastics and it was found that the energy consumption was 3.83 ± 0.26 MJ/kg-bioplastic, which was 12% and 22% higher than that of LDPE and PVC plastic films, respectively. The impacts on the environment showed that the chemical growth medium (Zarrouk medium) and electricity were the main contributors in most of the categories. Compared to the PVC and LDPE films, the Spirulina bioplastic's impacts on the aquatic ecosystems were 2-3 times higher. The global warming potential of the Spirulina bioplastic was 1.99 ± 0.014 kg CO2 eq, which was 23% and 47% lower than that of LDPE and PVC films, respectively. Sensitivity analysis was carried out by changing the electricity source and using alternative growth media. Except for the case of switching to solar energy, the results for other cases did not differ significantly from the base case scenario. Future studies were suggested to identify different greener alternatives to the growth medium as well as different energy mixes for more environmentally benign solutions.


Asunto(s)
Glicerol , Spirulina , Spirulina/crecimiento & desarrollo , Spirulina/química , Glicerol/química , Plásticos , Embalaje de Alimentos
10.
Artículo en Inglés | MEDLINE | ID: mdl-39113285

RESUMEN

Microbial fermentation has provided fermented foods and important chemicals such as antibiotics, amino acids, and vitamins. Metabolic engineering of synthetic microbes has expanded the range of compounds produced by fermentation. Petroleum-derived aromatic compounds are widely used in industry as raw materials for pharmaceuticals, dyes, and polymers and are in great demand. This review highlights the current efforts in the microbial production of various aromatic chemicals such as aromatic amines, cinnamic acid derivatives, and flavoring aromatics, including their biosynthesis pathways. In addition, the unique biosynthetic mechanism of pyrazine, a heterocyclic compound, from amino acids is described to expand the use of biomass-derived aromatic compounds. I also discuss our efforts to develop high-performance bioplastics superior to petroleum plastics from the aromatic compounds produced by microbial fermentation.

11.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673918

RESUMEN

Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.


Asunto(s)
Gelatina , Polisacáridos , Gelatina/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Plásticos/química , Biopolímeros/química , Carragenina/química , Rastreo Diferencial de Calorimetría , Sefarosa/química , Plásticos Biodegradables/química
12.
J Environ Manage ; 366: 121777, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018857

RESUMEN

Biodegradable plastics are being the substitute for synthetic plastics and widely been used in order to combat plastic pollution. Yet not all biodegradable plastics are degradable especially when it does not meet its favourable conditions, and also when it comes to aquatic environments. Therefore, this review is intended to highlight the types of various biodegradable plastic synthesized and commercialised and identify the limitations and advantages of these micro-bioplastics or residual bioplastic upon degradation in various aquatic environments. This review paper highlights on biodegradable plastic, degradation of biodegradable plastic in aquatic environments, application of biodegradable plastic, polylactic acid (PLA), Polyhydroxyalkanoates (PHA), Polysaccharide derivatives, Poly (amino acid), polycaprolactone (PCL), polybutylene succinate (PBS), polybutylene adipate terephthalate (PBA/T), limitations and advantages of biodegradable plastic degradation in aquatic environment. There is no limit on the period for literature search as this field is continuously being studied and there is no wide range of studies. Biodegradable plastic that is commercially available has its own advantages and limitations respectively upon degradation in both freshwater and marine environments. There is a growing demand for bioplastic as an alternative to synthetic plastic which causes plastic waste pollution. Thus, it is crucial to understand the biodegradation of biodegradable plastic in depth especially in aquatic environments. Moreover, there are also very few studies investigating the degradation and migration of micro-bioplastics in aquatic environments.


Asunto(s)
Plásticos Biodegradables , Biodegradación Ambiental , Poliésteres , Plásticos Biodegradables/química , Poliésteres/química , Contaminantes Químicos del Agua , Polihidroxialcanoatos , Plásticos
13.
J Environ Manage ; 369: 122399, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241591

RESUMEN

To determine the actual timeframe of biodegradation, bioplastics (BPs) (based on polylactic acid (PLA), starch (FS), polybutylene succinate (PBS), cellulose (Cel)) were degraded with biowaste (B), which simulates real substrate technological conditions during composting. For comparison, standard conditions (with mature compost (C)) were also applied. The 90-day aerobic tests, both with C or B, were carried out at 58 ± 2 °C. This comparison enables understanding of how BPs behave in real substrate conditions and how C and B affect the time or completeness of degradation based on oxygen consumption (OC) for BPs, the ratio of OC to theoretical oxygen consumption (OC/Th-O2), and the decrease in volatile solids (VS). Additionally, for deeper insight into the biodegradation process, microscopic, microbial (based on 16S rDNA), FTIR, and mechanical (tensile strength, elongation at break) analyses were performed. There was no association between the initial mechanical properties of BPs and the time necessary for their biodegradation. BPs lost their mechanical properties and remained visible for a shorter time when degraded with C than with B. OC for Cel, FS, PLA, and PBS biodegradation was 1143, 1654, 1748, and 1211g O2/kg, respectively, which amounted to 83, 70, 69, and 60% of the theoretical OC (Th-O2), respectively. Intensive OC took place at the same time as an intensive decrease in VS content. With C, Cel was most susceptible to biodegradation (completely biodegrading within 11 days), and PLA was least susceptible (requiring 70 days for complete biodegradation). With B, however, the time required for biodegradation was generally longer, and the differences in the time needed for complete biodegradation were smaller, ranging from 45 d (FS) to 75 d (PLA). The use of C or B had the greatest effect on Cel biodegradation (10 d vs 62 d, respectively), and the least effect on PLA (70 d vs 75 d). Specific bacterial and fungal community structures were identified as potential BP biodegraders; the communities depended on the type of BPs and the substrate conditions. In conclusion, the time needed for biodegradation of these BPs varied widely depending on the specific bioplastic and the substrate conditions; the biodegradability decreased in the following order: Cel â‰« FS â‰« PBS â‰« PLA with C and FS â‰« Cel = PBS â‰« PLA with B. The biodegradability ranking of BPs with B was assumed to be ultimate as it simulates the real substrate conditions during composting. However, all of the BPs completely biodegraded in less than 90 days.


Asunto(s)
Biodegradación Ambiental , Compostaje , Poliésteres/metabolismo , Plásticos/metabolismo , Suelo/química , Aerobiosis , Plásticos Biodegradables/metabolismo , Celulosa/metabolismo
14.
Molecules ; 29(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999147

RESUMEN

This research delves into a detailed exploration of the thermal decomposition behavior of bio-based polymers, specifically thermoplastic starch (TPS) and polylactic acid (PLA), under varying heating rates in a nitrogen atmosphere. This study employs thermogravimetry (TG) to investigate, providing comprehensive insights into the thermal stability of these eco-friendly polymers. In particular, the TPS kinetic model is examined, encompassing the decomposition of three distinct fractions. In contrast, PLA exhibits a simplified kinetic behavior requiring only a fraction described by a zero-order model. The kinetic study involves a systematic investigation into the individual contributions of key components within TPS, including starch, glycerin, and polyvinyl alcohol (PVA). This detailed analysis contributes to a comprehensive understanding of the thermal degradation process of TPS and PLA, enabling the optimization of processing conditions and the prediction of material behavior across varying thermal environments. Furthermore, the incorporation of different starch sources and calcium carbonate additives in TPS enhances our understanding of the polymer's thermal stability, offering insights into potential applications in diverse industries.

15.
J Environ Sci (China) ; 142: 169-181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527882

RESUMEN

Bioplastics were first introduced as environmentally friendly materials, with properties similar to those of conventional plastics. A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide under aerobic degradation, or methane and CO2 under anaerobic conditions, inorganic compounds, and new cellular biomass, by the action of naturally occurring microorganisms. This definition however does not provide any information on the environmental conditions, timescale and extent at which decomposition processes should occur. With regard to the aquatic environment, recognized standards have been established to assess the ability of plastics to undergo biodegradation; however, these standards fail to provide clear targets to be met to allow labelling of a bioplastic as biodegradable. Moreover, these standards grant the user an extensive leeway in the choice of process parameters. For these reasons, the comparison of results deriving from different studies is challenging. The authors analysed and discussed the degree of biodegradability of a series of biodegradable bioplastics in aquatic environments (both fresh and salt water) using the results obtained in the laboratory and from on-site testing in the context of different research studies. Biochemical Oxygen Demand (BOD), CO2 evolution, surface erosion and weight loss were the main parameters used by researchers to describe the percentage of biodegradation. The results showed a large variability both in weight loss and BOD, even when evaluating the same type of bioplastics. This confirms the need for a reference range of values to be established with regard to parameters applied in defining the biodegradability of bioplastics.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Plásticos Biodegradables/metabolismo , Plásticos/metabolismo , Monitoreo del Ambiente/métodos
16.
Extremophiles ; 27(2): 13, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349574

RESUMEN

Polyhydroxyalkanoates (PHA) can be used to combat the challenges associated with plastic because it is biodegradable and can be produced from renewable resources. Extremophiles are considered to be potential PHA producers. An initial screening for the PHA synthesizing ability of a thermophilic bacteria Geobacillus stearothermophilus strain K4E3_SPR_NPP was carried out using Sudan black B staining. Nile red viable colony staining was used to further verify that the isolates produced PHA. Crotonic acid assays were used to determine the concentrations of PHA. The bacteria showed 31% PHA accumulation per dry cell weight (PHA/DCW) when glucose was used as a carbon source for growth. The molecule was identified to be medium chain length PHA, A copolymer of PHA containing poly(3-hydroxybutyrate)-poly(3-hydroxyvalerate)-poly(3-hydroxyhexanoate) (PHB-PHV-PHHX) using 1H-NMR. Six carbon sources and four nitrogen sources were screened for the synthesis of maximum PHA content, of which lactose and ammonium nitrate showed 45% and 53% PHA/DCW respectively. The important factors in the experiment are identified using the Plackett-Burman design, and optimization is performed using the response surface method. Response surface methodology was used to optimize the three important factors, and the maximum biomass and PHA productions were discovered. Optimal concentrations yielded a maximum of 0.48 g/l biomass and 0.32 g/l PHA, measuring 66.66% PHA accumulation. Dairy industry effluent was employed for the synthesis of PHA, yielding 0.73 g/l biomass and 0.33 g/l PHA, measuring 45% PHA accumulation. These findings add credibility to the possibility of adopting thermophilic isolates for PHA production using low-cost substrates.


Asunto(s)
Polihidroxialcanoatos , Geobacillus stearothermophilus/metabolismo , Resonancia por Plasmón de Superficie , Ácido 3-Hidroxibutírico , Carbono/metabolismo
17.
Environ Sci Technol ; 57(30): 11108-11121, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37474498

RESUMEN

Polyhydroxyalkanoates (PHAs) can be produced with municipal waste activated sludge from biological wastewater treatment processes. Methods of selective fluorescent staining with confocal laser scanning microscopy (CLSM) were developed and optimized to evaluate the distribution of PHA storage activity in this mixed culture activated sludge microbial communities. Selective staining methods were applied to a municipal activated sludge during pilot scale PHA accumulation in replicate experiments. Visualization of stained flocs revealed that a significant but limited fraction of the biomass was engaged with PHA accumulation. Accumulated PHA granules were furthermore heterogeneously distributed within and between flocs. These observations suggested that the PHA content for the bacteria storing PHAs was significantly higher than the average PHA content measured for the biomass as a whole. Optimized staining methods provided high acuity for imaging of PHA distribution when compared to other methods reported in the literature. Selective staining methods were sufficient to resolve and distinguish between distinctly different morphotypes in the biomass, and these observations of distinctions have interpreted implications for PHA recovery methods. Visualization tools facilitate meaningful insights for advancements of activated sludge processes where systematic observations, as applied in the present work, can reveal underlying details of structure-function relationships.


Asunto(s)
Polihidroxialcanoatos , Purificación del Agua , Aguas del Alcantarillado/microbiología , Biomasa , Bacterias , Reactores Biológicos/microbiología
18.
Environ Res ; 236(Pt 2): 116833, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543134

RESUMEN

In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.

19.
Biochemistry (Mosc) ; 88(Suppl 1): S150-S175, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37069119

RESUMEN

Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.


Asunto(s)
Biotecnología , Disolventes Eutécticos Profundos , Solventes/química , Hidrólisis , Biocatálisis , Biomasa
20.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37481695

RESUMEN

Polyhydroxyalkanoates (PHAs) are bioplastics that can serve as substitutes for petroleum-based plastics with the advantages of being biodegradable, biocompatible, and biobased. The microbial production of polyhydroxyalkanoates is generally conducted in the presence of sugar mixes rich in monosaccharides. In this study, molecular and cultural approaches based on forest soils enriched with hydrocarbon complexes led to the identification and isolation of microbial strains affiliated with Paraburkholderia sp. that dominated the microbial communities that are recognized among the top polyhydroxyalkanoates producers. The genome sequencing of those isolated affiliated strains showed that compared to the reference type strain of their species, they harbored more gene copies of the enzymes involved in PHB synthesis. The microbial conversion of sugar mixes for the newly isolated strains showed a higher PHB production (g/L) and content (%) than was exhibited by the reference strain type of that genus Paraburkholderia for PHB production (P. sacchari LMG 19450T).


Asunto(s)
Polihidroxialcanoatos , Biopolímeros , Plásticos , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA