Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266639

RESUMEN

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Asunto(s)
Proteínas de Unión al ADN , Recombinasas , Humanos , ADN/genética , Reparación del ADN , Replicación del ADN , ADN Cruciforme , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinasas/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo
2.
Mol Cell ; 81(11): 2428-2444.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33882298

RESUMEN

Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.


Asunto(s)
Proteína BRCA1/genética , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , Células Madre Embrionarias de Ratones/metabolismo , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Línea Celular , Células Clonales , ADN Helicasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Ubiquitinación
3.
Strahlenther Onkol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995367

RESUMEN

INTRODUCTION: Bloom syndrome (BS) is a rare autosomal recessive disorder caused by a loss-of-function mutation in the BLM gene encoding an RecQ helicase involved in DNA repair and maintenance of chromosomal stability. In patients with BS, significant sensitivity to both DNA-damaging chemotherapy (CT) and ionizing radiation complicates the management of neoplasms by exacerbating comorbidities and predisposing to toxicities and poor outcomes. CASE REPORT: A 30-year-old female patient diagnosed with BS who presented with early-stage triple-negative breast cancer was treated with four cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) followed by weekly paclitaxel (80 mg/m2) for 12 weeks as the chemotherapy protocol and a total of 5000 cGy curative radiotherapy (RT). Due to pancytopenia 8 months after completion of therapy, bone marrow biopsy and aspiration were performed, and a diagnosis of myelodysplastic syndrome with excess blasts 2 (MDS-EB2) was made. Two courses of the azacitidine (75 mg/m2) protocol were administered every 28 days in the hematology clinic. Two weeks after CT the patient was transferred from the emergency department to the hematology clinic with the diagnosis of pancytopenia and febrile neutropenia. She died at the age of 33 due to sepsis that developed during follow-up. CONCLUSION: Due to the rarity of BS, there is no prospective trial in patients with cancer and no evidence base upon which to design treatment programs. For these reasons, it is strongly recommended that patients receive multidisciplinary care, with precise assessment and discussion of the indication and an adequate dose of DNA-damaging agents such as chemotherapy and ionizing radiation.

4.
J Stroke Cerebrovasc Dis ; 33(1): 107490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988834

RESUMEN

OBJECTIVE: Bloom syndrome is a chromosomal breakage disorder associated with immune deficiency, characterized by short stature, predisposition to early-onset cancer, and immune defects. Currently, there have been no reports of acute cerebral infarction in patients with Bloom syndrome. Here, we report a case of Bloom syndrome complicated by elevated antiphospholipid antibodies and acute cerebral infarction. MATERIALS AND METHODS: A 23-year-old male with a known genetic diagnosis of Bloom syndrome was admitted to the Respiratory Department due to pulmonary aspergillosis. The patient experienced sudden dizziness, and subsequent cranial MRI revealed a newly developed infarction in the right cerebellar hemisphere. RESULTS: Six days later, the patient presented with sudden right visual field loss, and a repeat cranial MRI showed new infarctions in the left occipital and temporal lobes. Positive lupus anticoagulant and prolonged activated partial thromboplastin time suggested elevated antiphospholipid antibodies causing thrombus formation. Unfortunately, anticoagulant treatment was not administered due to recurrent hemoptysis. CONCLUSION: This study reports the first case of a Bloom syndrome patient with elevated antiphospholipid antibodies and acute cerebral infarction, suggesting that the immune and coagulation abnormalities caused by Bloom syndrome may contribute to the development of acute cerebral infarction.


Asunto(s)
Síndrome Antifosfolípido , Síndrome de Bloom , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Masculino , Humanos , Adulto Joven , Adulto , Anticuerpos Antifosfolípidos , Accidente Cerebrovascular Isquémico/complicaciones , Síndrome de Bloom/complicaciones , Síndrome Antifosfolípido/complicaciones , Síndrome Antifosfolípido/diagnóstico , Síndrome Antifosfolípido/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/complicaciones , Isquemia Encefálica/etiología , Isquemia Encefálica/complicaciones , Infarto , Infarto Cerebral/complicaciones , Infarto Cerebral/diagnóstico por imagen
5.
Genet Med ; 24(7): 1476-1484, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35420546

RESUMEN

PURPOSE: This study aimed to describe the spectrum of cancers observed in Bloom Syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome as these are not well-defined. METHODS: Data from the Bloom Syndrome Registry (BSR) was used for this study. Cancer history, ages of first cancer diagnosis, and ages of death were compiled from the BSR and analyzed. RESULTS: Among the 290 individuals in the BSR, 155 (53%) participants developed 251 malignant neoplasms; 100 (65%) were diagnosed with 1 malignancy, whereas the remaining 55 (35%) developed multiple malignancies. Of the 251 neoplasms, 83 (33%) were hematologic and 168 (67%) were solid tumors. Hematologic malignancies (leukemia and lymphoma) were more common than any of the solid tumors. The most commonly observed solid tumors were colorectal, breast, and oropharyngeal. The cumulative incidence of any malignancy by age 40 was 83%. The median survival for all participants in the BSR was 36.2 years. There were no significant differences in time to first cancer diagnosis or survival by genotype among the study participants. CONCLUSION: We describe the spectrum of cancers observed in Bloom syndrome and the observed survival and age of first cancer diagnosis in Bloom syndrome. We also highlight the significant differences in survival and age of diagnosis seen among different tumor types and genotypes.


Asunto(s)
Síndrome de Bloom , Neoplasias Hematológicas , Neoplasias , Adulto , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/epidemiología , Síndrome de Bloom/genética , Neoplasias Hematológicas/diagnóstico , Humanos , Incidencia , Neoplasias/diagnóstico , Neoplasias/epidemiología , Sistema de Registros
6.
Clin Genet ; 101(5-6): 559-564, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218564

RESUMEN

Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency, which should be considered as one of the most important phenotypic characteristics of BS.


Asunto(s)
Síndrome de Bloom , Microcefalia , Síndrome de Bloom/genética , Proteínas de Unión al ADN/genética , Genotipo , Humanos , Microcefalia/genética , Fenotipo , RecQ Helicasas/genética
7.
Genes Dev ; 28(10): 1124-36, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24831703

RESUMEN

The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM-TopoIIIα-RMI1-RMI2 (BTR complex), SLX1-SLX4-MUS81-EME1 (SLX-MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX-MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX-MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1-SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1-SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells.


Asunto(s)
Inestabilidad Genómica/fisiología , Mitosis/fisiología , Anafase , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Centrómero/metabolismo , Aberraciones Cromosómicas , Cromosomas/enzimología , Roturas del ADN , Inestabilidad Genómica/genética , Células HeLa , Humanos , Indoles/metabolismo , Micronúcleos con Defecto Cromosómico , Mitosis/genética , Recombinasas/metabolismo , Origen de Réplica/genética
8.
Angew Chem Int Ed Engl ; 61(39): e202209463, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35922882

RESUMEN

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited. Here, we demonstrate that BLM possesses the intrinsic ability for phase separation and can co-phase separate with ssDNA to form dynamically arrested protein/ssDNA co-condensates. The introduction of ATP potentiates the capability of BLM to condense on ssDNA, which further promotes the compression of ssDNA against a resistive force of up to 60 piconewtons. Moreover, BLM is also capable of condensing replication protein A (RPA)- or RAD51-coated ssDNA, before which it generates naked ssDNA by dismantling these ssDNA-binding proteins. Overall, our findings identify an unexpected characteristic of a DNA helicase and provide a new angle of protein/ssDNA co-condensation for understanding the genomic instability caused by BLM overexpression under diseased conditions.


Asunto(s)
Síndrome de Bloom , RecQ Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Síndrome de Bloom/genética , ADN , Reparación del ADN , ADN de Cadena Simple , Inestabilidad Genómica , Humanos , RecQ Helicasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
9.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057030

RESUMEN

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

10.
Mol Genet Metab ; 133(1): 35-48, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33736941

RESUMEN

Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.


Asunto(s)
Síndrome de Bloom/genética , Neoplasias/genética , RecQ Helicasas/genética , Síndrome de Bloom/complicaciones , Síndrome de Bloom/patología , Replicación del ADN/genética , Inestabilidad Genómica , Humanos , Mutación/genética , Neoplasias/complicaciones , Neoplasias/patología , Unión Proteica/genética
11.
Clin Genet ; 99(2): 292-297, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33073370

RESUMEN

Pathogenic biallelic variants in the BLM/RECQL3 gene cause a rare autosomal recessive disorder called Bloom syndrome (BS). This syndrome is characterized by severe growth delay, immunodeficiency, dermatological manifestations and a predisposition to a wide variety of cancers, often multiple and very early in life. Literature shows that the main mode of BLM inactivation is protein translation termination. We expanded the molecular spectrum of BS by reporting the first deep intronic variant causing intron exonisation. We describe a patient with a clinical phenotype of BS and a strong increase in sister chromatid exchanges (SCE), who was found to be compound heterozygous for a novel nonsense variant c.3379C>T, p.(Gln1127Ter) in exon 18 and a deep intronic variant c.3020-258A>G in intron 15 of the BLM gene. The deep intronic variant creates a high-quality de novo donor splice site, which leads to retention of two intron segments. Both pseudo-exons introduce a premature stop codon into the reading frame and abolish BLM protein expression, confirmed by Western Blot analysis. These findings illustrate the role of non-coding variation in Mendelian disorders and herewith highlight an unmet need in routine testing of Mendelian disorders, being the added value of RNA-based approaches to provide a complete molecular diagnosis.


Asunto(s)
Síndrome de Bloom/genética , Codón sin Sentido , Intrones/genética , RecQ Helicasas/genética , Exones/genética , Heterocigoto , Humanos , Patrón de Herencia , Masculino , Linaje , Fenotipo , Adulto Joven
12.
Pediatr Blood Cancer ; 68(2): e28815, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33226170

RESUMEN

The treatment of malignancy in cancer predisposition syndromes that also confer exquisite sensitivity to standard chemotherapy and radiation regimens remains a challenge. Bloom syndrome is one such disorder that is caused by a defect in DNA repair, predisposing to the development of early-onset age-related medical conditions and malignancies. We report on two patients with Bloom syndrome who responded well to chemotherapy despite significant alterations to standard protocols necessitated by hypersensitivity. Both patients experienced severe toxicities and exacerbation of endocrine comorbidities during chemotherapy. A multidisciplinary team of oncologists and endocrinologists is best suited to care for this patient population.


Asunto(s)
Antineoplásicos/uso terapéutico , Síndrome de Bloom/patología , Enfermedades del Sistema Endocrino/patología , Neoplasias/tratamiento farmacológico , Antineoplásicos/efectos adversos , Síndrome de Bloom/genética , Reparación del ADN/genética , Femenino , Humanos , Masculino , Neoplasias/patología , RecQ Helicasas/genética , Adulto Joven
13.
Chromosome Res ; 27(1-2): 57-72, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30556094

RESUMEN

More than half of the human genome consists of repetitive sequences, with the ribosomal DNA (rDNA) representing two of the largest repeats. Repetitive rDNA sequences may form a threat to genomic integrity and cellular homeostasis due to the challenging aspects of their transcription, replication, and repair. Predisposition to cancer, premature aging, and neurological impairment in ataxia-telangiectasia and Bloom syndrome, for instance, coincide with increased cellular rDNA repeat instability. However, the mechanisms by which rDNA instability contributes to these hereditary syndromes and tumorigenesis remain unknown. Here, we review how cells govern rDNA stability and how rDNA break repair influences expansion and contraction of repeat length, a process likely associated with human disease. Recent advancements in CRISPR-based genome engineering may help to explain how cells keep their rDNA intact in the near future.


Asunto(s)
ADN Ribosómico/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Daño del ADN , Reparación del ADN , Replicación del ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Genómica/métodos , Humanos , Transcripción Genética
14.
Adv Exp Med Biol ; 1258: 37-54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32767233

RESUMEN

The RECQ family of DNA helicases is a conserved group of enzymes that plays an important role in maintaining genomic stability. Humans possess five RECQ helicase genes, and mutations in three of them - BLM, WRN, and RECQL4 - are associated with the genetic disorders Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (RTS), respectively. These syndromes share overlapping clinical features, and importantly they are all associated with an increased risk of cancer. Patients with RTS have the highest specific risk of developing osteosarcoma compared to all other cancer predisposition syndromes; therefore, RTS serves as a relevant model to study the pathogenesis and molecular genetics of osteosarcoma. The "tumor suppressor" function of the RECQ helicases continues to be an area of active investigation. This chapter will focus primarily on the known cellular functions of RECQL4 and how these may relate to tumorigenesis, as well as ongoing efforts to understand RECQL4's functions in vivo using animal models. Understanding the RECQ pathways will provide insight into avenues for novel cancer therapies in the future.


Asunto(s)
Neoplasias Óseas/enzimología , Osteosarcoma/enzimología , RecQ Helicasas/metabolismo , Animales , Neoplasias Óseas/genética , Inestabilidad Genómica , Humanos , Osteosarcoma/genética , Síndrome Rothmund-Thomson/enzimología , Síndrome Rothmund-Thomson/genética
15.
Bioessays ; 39(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28792069

RESUMEN

The functions of the Bloom syndrome helicase (BLM) and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of BLM and its orthologs. In this model, BLM and its orthologs utilize helicase activity to regulate the use of various pathways in meiotic recombination by continuously disassembling recombination intermediates. This unwinding activity provides the meiotic program with a steady pool of early recombination substrates, increasing the probability for a DSB to be processed by the appropriate pathway. As a result of BLM activity, crossovers are properly placed throughout the genome, promoting proper chromosomal disjunction at the end of meiosis. This unified model can be used to further refine the complex role of BLM and its orthologs in meiotic recombination.


Asunto(s)
Síndrome de Bloom/genética , ADN Helicasas/genética , Meiosis/genética , RecQ Helicasas/genética , Animales , Cromosomas/genética , Reparación del ADN/genética , Humanos , Recombinación Genética/genética
16.
Trends Biochem Sci ; 39(9): 409-19, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25131815

RESUMEN

Holliday junctions (HJs) are four-stranded DNA intermediates that arise during the recombinational repair of DNA double-strand breaks (DSBs). Their timely removal is crucial for faithful chromosome segregation and genome stability. In mammalian cells, HJs are processed by the BTR (BLM-topoisomerase IIIα-RMI1-RMI2) complex, the SLX-MUS (SLX1-SLX4-MUS81-EME1) complex, and the GEN1 resolvase. Recent studies have linked the deficiency of one or more of these enzymes to perturbed DNA replication, impaired crosslink repair, chromosomal instability, and defective mitoses, coupled with the transmission of widespread DNA damage and high levels of mortality. We review these key advances and how they have cemented the status of HJ-processing enzymes as guardians of genome integrity and viability in mammalian cells.


Asunto(s)
Replicación del ADN , ADN Cruciforme/metabolismo , Inestabilidad Genómica , Resolvasas de Unión Holliday/metabolismo , Animales , Daño del ADN , Humanos , Recombinación Genética
17.
J Clin Immunol ; 38(1): 35-44, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29098565

RESUMEN

Bloom's syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20-80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.


Asunto(s)
Linfocitos B/fisiología , Síndrome de Bloom/diagnóstico , Síndromes de Inmunodeficiencia/diagnóstico , Mutación/genética , RecQ Helicasas/genética , Linfocitos T/fisiología , Adulto , Síndrome de Bloom/genética , Diferenciación Celular , Niño , Reparación del ADN , Femenino , Humanos , Inmunoglobulina A/genética , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G/genética , Síndromes de Inmunodeficiencia/genética , Inmunofenotipificación , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Hipermutación Somática de Inmunoglobulina
18.
Am J Med Genet A ; 176(9): 1872-1881, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30055079

RESUMEN

Bloom Syndrome (BSyn) is an autosomal recessive disorder that causes growth deficiency, endocrine abnormalities, photosensitive skin rash, immune abnormalities, and predisposition to early-onset cancer. The available treatments for BSyn are symptomatic, and early identification of complications has the potential to improve outcomes. To accomplish this, standardized recommendations for health supervision are needed for early diagnosis and treatment. The purpose of this report is to use information from the BSyn Registry, published literature, and expertise from clinicians and researchers with experience in BSyn to develop recommendations for diagnosis, screening, and treatment of the clinical manifestations in people with BSyn. These health supervision recommendations can be incorporated into the routine clinical care of people with BSyn and can be revised as more knowledge is gained regarding their clinical utility.


Asunto(s)
Síndrome de Bloom/epidemiología , Atención a la Salud , Síndrome de Bloom/complicaciones , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/terapia , Niño , Desarrollo Infantil , Preescolar , Atención a la Salud/historia , Atención a la Salud/organización & administración , Manejo de la Enfermedad , Femenino , Directrices para la Planificación en Salud , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Incidencia , Inteligencia , Masculino , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/etiología , Neoplasias/terapia , Estado Nutricional , Fenotipo , Vigilancia en Salud Pública , Sistema de Registros
19.
Hum Mutat ; 38(2): 193-203, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27859906

RESUMEN

Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.


Asunto(s)
Estudios de Asociación Genética , Genética de Población , Mutación , RecQ Helicasas/genética , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos de Ácidos Nucleicos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Curva ROC , Programas Informáticos , Navegador Web
20.
Pediatr Blood Cancer ; 64(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27966805

RESUMEN

This report presents a case of Bloom syndrome (BS) in a consanguineous Saudi family. The patient, an 11-year-old male with mature B-cell lymphoma, had minimal therapeutic response and significant dose-limiting toxicity with standard chemotherapy treatment. He later responded successfully to a rituximab-based chemotherapy protocol. This case highlights that the rituximab-based chemotherapy protocol is an effective and safe treatment alternative for mature B-cell lymphoma in patients with BS. Further trials are warranted to investigate this modality of treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Síndrome de Bloom/complicaciones , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Rituximab/uso terapéutico , Niño , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA