RESUMEN
How mis-regulated chromatin directly impacts human immune disorders is poorly understood. Speckled Protein 140 (SP140) is an immune-restricted PHD and bromodomain-containing epigenetic "reader," and SP140 loss-of-function mutations associate with Crohn's disease (CD), multiple sclerosis (MS), and chronic lymphocytic leukemia (CLL). However, the relevance of these mutations and mechanisms underlying SP140-driven pathogenicity remains unexplored. Using a global proteomic strategy, we identified SP140 as a repressor of topoisomerases (TOPs) that maintains heterochromatin and macrophage fate. In humans and mice, SP140 loss resulted in unleashed TOP activity, de-repression of developmentally silenced genes, and ultimately defective microbe-inducible macrophage transcriptional programs and bacterial killing that drive intestinal pathology. Pharmacological inhibition of TOP1/2 rescued these defects. Furthermore, exacerbated colitis was restored with TOP1/2 inhibitors in Sp140-/- mice, but not wild-type mice, in vivo. Collectively, we identify SP140 as a TOP repressor and reveal repurposing of TOP inhibition to reverse immune diseases driven by SP140 loss.
Asunto(s)
Enfermedad de Crohn , Animales , Humanos , Ratones , Antígenos Nucleares , Enfermedad de Crohn/genética , Enfermedad de Crohn/patología , Epigénesis Genética , Regulación de la Expresión Génica , Macrófagos/patología , Proteómica , Factores de TranscripciónRESUMEN
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19RESUMEN
The acetyltransferases CBP and p300 are multifunctional transcriptional co-activators. Here, we combined quantitative proteomics with CBP/p300-specific catalytic inhibitors, bromodomain inhibitor, and gene knockout to reveal a comprehensive map of regulated acetylation sites and their dynamic turnover rates. CBP/p300 acetylates thousands of sites, including signature histone sites and a multitude of sites on signaling effectors and enhancer-associated transcriptional regulators. Time-resolved acetylome analyses identified a subset of CBP/p300-regulated sites with very rapid (<30 min) acetylation turnover, revealing a dynamic balance between acetylation and deacetylation. Quantification of acetylation, mRNA, and protein abundance after CBP/p300 inhibition reveals a kinetically competent network of gene expression that strictly depends on CBP/p300-catalyzed rapid acetylation. Collectively, our in-depth acetylome analyses reveal systems attributes of CBP/p300 targets, and the resource dataset provides a framework for investigating CBP/p300 functions and for understanding the impact of small-molecule inhibitors targeting its catalytic and bromodomain activities.
Asunto(s)
Acetiltransferasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación/efectos de los fármacos , Acetiltransferasas/antagonistas & inhibidores , Animales , Línea Celular , Técnicas de Inactivación de Genes , Semivida , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Histonas/metabolismo , Humanos , Marcaje Isotópico , Cinética , Espectrometría de Masas , Ratones , Péptidos/análisis , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transcriptoma/efectos de los fármacos , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/genéticaRESUMEN
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Asunto(s)
Epigénesis Genética , Humanos , Animales , Metilación de ADN/genética , Enfermedad/genéticaRESUMEN
The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.
Asunto(s)
Elementos de Facilitación Genéticos , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Biocatálisis , Cromatina/metabolismo , Regulación hacia Abajo/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Unión Proteica , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Invasividad Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Transcripción Genética/genética , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
Stabilization of stalled replication forks is a prominent mechanism of PARP (Poly(ADP-ribose) Polymerase) inhibitor (PARPi) resistance in BRCA-deficient tumors. Epigenetic mechanisms of replication fork stability are emerging but remain poorly understood. Here, we report the histone acetyltransferase PCAF (p300/CBP-associated) as a fork-associated protein that promotes fork degradation in BRCA-deficient cells by acetylating H4K8 at stalled replication forks, which recruits MRE11 and EXO1. A H4K8ac binding domain within MRE11/EXO1 is required for their recruitment to stalled forks. Low PCAF levels, which we identify in a subset of BRCA2-deficient tumors, stabilize stalled forks, resulting in PARPi resistance in BRCA-deficient cells. Furthermore, PCAF activity is tightly regulated by ATR (ataxia telangiectasia and Rad3-related), which phosphorylates PCAF on serine 264 (S264) to limit its association and activity at stalled forks. Our results reveal PCAF and histone acetylation as critical regulators of fork stability and PARPi responses in BRCA-deficient cells, which provides key insights into targeting BRCA-deficient tumors and identifying epigenetic modulators of chemotherapeutic responses.
Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Histonas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lisina/metabolismo , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica/efectos de los fármacos , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/genéticaRESUMEN
BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer (TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-existing or acquired.
Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Asunto(s)
Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Blástula/metabolismo , Blástula/citología , Diferenciación Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transcriptoma/genéticaRESUMEN
Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.
Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Antineoplásicos/química , Azepinas/química , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/químicaRESUMEN
Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.
Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , Reparación del ADN por Recombinación/genética , Factores de Transcripción/genética , Acetilación , Línea Celular , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Células HEK293 , Células HeLa , Humanos , Transactivadores/metabolismo , Factores de Transcripción/análisis , Ubiquitinación , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismoRESUMEN
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.
Asunto(s)
Empalme Alternativo/genética , Carcinogénesis/genética , Factores de Transcripción de Tipo Kruppel/genética , Oncogenes/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética , Animales , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genéticaRESUMEN
Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Leucemia , Humanos , Glucógeno Sintasa Quinasa 3/metabolismo , Línea Celular Tumoral , Leucemia/tratamiento farmacológico , Leucemia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismoRESUMEN
DNA replication origins in hyperacetylated euchromatin fire preferentially during early S phase. However, how acetylation controls DNA replication timing is unknown. TICRR/TRESLIN is an essential protein required for the initiation of DNA replication. Here, we report that TICRR physically interacts with the acetyl-histone binding bromodomain (BRD) and extraterminal (BET) proteins BRD2 and BRD4. Abrogation of this interaction impairs TICRR binding to acetylated chromatin and disrupts normal S-phase progression. Our data reveal a novel function for BET proteins and establish the TICRR-BET interaction as a potential mechanism for epigenetic control of DNA replication.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Epigénesis Genética , Proteínas de Ciclo Celular/química , Línea Celular , Cromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Factores de Transcripción/metabolismoRESUMEN
Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.
Asunto(s)
Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Mutación , Nitrilos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas , Interferencia de ARN , Receptores de Citocinas/genética , Transcriptoma , Triazoles/farmacologíaRESUMEN
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Azidas , Proteínas que Contienen Bromodominio , Proteínas de Unión al ADN , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Azidas/metabolismo , Histonas/metabolismo , Interleucinas/metabolismo , Unión Proteica , Humanos , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
The transformation from a fibroblast mesenchymal cell state to an epithelial-like state is critical for induced pluripotent stem cell (iPSC) reprogramming. In this report, we describe studies with PFI-3, a small-molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunits of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings reveal that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition during iPSC formation. This transition is characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.
Asunto(s)
Plasticidad de la Célula , Reprogramación Celular , Matriz Extracelular , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Reprogramación Celular/genética , Reprogramación Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plasticidad de la Célula/genética , Plasticidad de la Célula/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/efectos de los fármacosRESUMEN
BACKGROUND: BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS: RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS: Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS: BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.
Asunto(s)
Enfermedades de la Retina , Factores de Transcripción , Animales , Humanos , Ratones , Angiogénesis , Biología , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
BET proteins commonly activate cellular gene expression, yet inhibiting their recruitment paradoxically reactivates latent HIV-1 transcription. Here we identify the short isoform of BET family member BRD4 (BRD4S) as a corepressor of HIV-1 transcription. We found that BRD4S was enriched in chromatin fractions of latently infected T cells, and it was more rapidly displaced from chromatin upon BET inhibition than the long isoform. BET inhibition induced marked nucleosome remodeling at the latent HIV-1 promoter, which was dependent on the activity of BRG1-associated factors (BAF), an SWI/SNF chromatin-remodeling complex with known repressive functions in HIV-1 transcription. BRD4S directly bound BRG1, a catalytic subunit of BAF, via its bromodomain and extraterminal (ET) domain, and this isoform was necessary for BRG1 recruitment to latent HIV-1 chromatin. Using chromatin immunoprecipitation sequencing (ChIP-seq) combined with assay for transposase-accessible chromatin coupled to high-throughput sequencing (ATAC-seq) data, we found that the latent HIV-1 promoter phenotypically resembles endogenous long terminal repeat (LTR) sequences, pointing to a select role of BRD4S-BRG1 complexes in genomic silencing of invasive retroelements.
Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Viral/metabolismo , VIH-1/metabolismo , Proteínas Nucleares/metabolismo , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Latencia del Virus , Azepinas/farmacología , Proteínas de Ciclo Celular , Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/efectos de los fármacos , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Viral/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Regulación Viral de la Expresión Génica , Células HEK293 , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Células Jurkat , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas , Interferencia de ARN , Retroelementos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/virología , Factores de Tiempo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Transfección , Triazoles/farmacología , Latencia del Virus/efectos de los fármacosRESUMEN
Bromodomain and extra-terminal (BET) proteins are relevant chromatin adaptors involved in the transcriptional control of thousands of genes. Two tandem N-terminal bromodomains are essential for chromatin attachment through acetyl-histone recognition. Recently, the BET proteins members BRD2 and BRD4 were found to interact with the SARS-CoV-2 envelope (E) protein, raising the question of whether the interaction constitutes a virus hijacking mechanism for transcription alteration in the host cell. To shed light on this question, we have compared the transcriptome of cells overexpressing E with that of cells treated with the BET inhibitor JQ1. Notably, E overexpression leads to a strong upregulation of natural immunity- and interferon response-related genes. However, BET inhibition results in the downregulation of most of these genes, indicating that these two conditions, far from causing a significant overlap of the altered transcriptomes, course with quite different outputs. Concerning the interaction of E protein with BET members, and differing from previous reports indicating that it occurs through BET bromodomains, we find that it relies on SEED and SEED-like domains, BET regions rich in Ser, Asp, and Glu residues. By taking advantage of this specific interaction, we have been able to direct selective degradation of E protein through a PROTAC system involving a dTAG-SEED fusion, highlighting the possible therapeutic use of this peptide for targeted degradation of a viral essential protein.