RESUMEN
BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Productos Finales de Glicación Avanzada , Lipoproteínas LDL , FN-kappa B , Osteogénesis , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Productos Finales de Glicación Avanzada/metabolismo , FN-kappa B/metabolismo , Humanos , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/patología , Cricetinae , Osteogénesis/efectos de los fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animales de Enfermedad , Femenino , Persona de Mediana Edad , Proteinas GlicosiladasRESUMEN
Background: We aimed to evaluate echocardiographic parameters to predict calcific aortic valve disease (CAVD) progression. CAVD ranges from aortic valve sclerosis (ASc) with no functional impairment of the aortic valve to severe aortic stenosis (AS). It remains uncertain, which patients with ASc have a particularly high risk of developing AS. Methods: We included a total of 153 patients with visual signs of ASc and peak flow velocity (Vmax) below 2.5 m/s at baseline echocardiography. Progression of CAVD to AS was defined as an increase in Vmax ≥ 2.5 m/s with a delta of ≥ 0.1 m/s; stable ASc was defined as Vmax below 2.5 m/s and a delta < 0.1 m/s. Finally, we compared clinical and echocardiographic parameters between these two groups. Results: The mean age at baseline was 73.5 ( ± 8.2) years and 66.7% were of male sex. After a mean follow-up of 1463 days, 57 patients developed AS, while 96 patients remained in the ASc group. The AS group showed significantly more calcification (p < 0.001) and thickening (p < 0.001) of the aortic valve cusps at baseline, although hemodynamics showed no evidence of AS in both groups (ASc group: Vmax 1.6 ± 0.3 m/s versus AS group: Vmax 1.9 ± 0.3 m/s; p < 0.001). Advanced calcification (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5-15.9; p = 0.009) and a cusp thickness > 0.26 cm (OR: 16.6, 95% CI: 5.4-50.7; p < 0.001) were independent predictors for the development of AS. Conclusions: The acquisition of simple echocardiographic parameter may help to identify patients with particularly high risk of developing AS.
RESUMEN
BACKGROUND: Human aortic valve interstitial cells (hAVICs) are a key factor in the pathogenesis of calcific aortic valve disease (CAVD). This research examines the role and mechanism of microRNA miR-138-5p in osteogenic differentiation of hAVICs. METHODS: RT-qPCR analysis was applied for detecting miR-138-5p and RUNX2 expression in valve tissues of CAVD patients and controls. On completion of induction of osteogenic differentiation of hAVICs, and after overexpression or interference of miR-138-5p expression, the condition of osteogenic differentiation and calcification of hAVICs was confirmed using alkaline phosphatase staining and alizarin red staining. Subsequently, western blot was utilized to detect the expression of osteogenesis-related proteins OPN and ALP, and Wnt/ß-catenin signaling pathway-related proteins. Finally, the relationship between miR-138-5p and RUNX2 was validated by dual-luciferase reporter assay and Pearson's correlation test. RESULTS: Down-regulation of miR-138-5p was found in CAVD patients and during osteogenic differentiation of hAVICs. Overexpression of miR-138-5p contribute to the inhibition of osteoblast differentiation and calcium deposition in hAVICs, and of ALP and OPN protein expression. RUNX2 was a target gene of miR-138-5p, and it was negatively correlated with miR-138-5p in CAVD. Additionally, overexpression of RUNX2 could reverse the inhibitory effect of miR-138-5p on osteogenic differentiation of hAVICs. CONCLUSION: miR-138-5p can act as a positive regulator of osteogenic differentiation in CAVD patients to involve in inhibiting valve calcification, which is achieved through RUNX2 and Wnt/ß-catenin signaling pathway.
Asunto(s)
Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/patología , Calcinosis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación de la Expresión Génica , MicroARNs/genética , Osteogénesis/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Adulto , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/diagnóstico , Calcinosis/metabolismo , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Femenino , Humanos , Masculino , MicroARNs/biosíntesis , beta Catenina/biosíntesisRESUMEN
Calcific aortic valve disease (CAVD) is a significant cause of illness and death worldwide. Identification of early predictive markers could help optimize patient management. RNA-sequencing was carried out on human fetal aortic valves at gestational weeks 9, 13, and 22 and on a case-control study with adult noncalcified and calcified bicuspid and tricuspid aortic valves. In dimension reduction and clustering analyses, diseased valves tended to cluster with fetal valves at week 9 rather than normal adult valves, suggesting that part of the disease program might be due to reiterated developmental processes. The analysis of groups of coregulated genes revealed predominant immune-metabolic signatures, including innate and adaptive immune responses involving lymphocyte T-cell metabolic adaptation. Cytokine and chemokine signaling, cell migration, and proliferation were all increased in CAVD, whereas oxidative phosphorylation and protein translation were decreased. Discrete immune-metabolic gene signatures were present at fetal stages and increased in adult controls, suggesting that these processes intensify throughout life and heighten in disease. Cellular stress response and neurodegeneration gene signatures were aberrantly expressed in CAVD, pointing to a mechanistic link between chronic inflammation and biological aging. Comparison of the valve RNA-sequencing data set with a case-control study of whole blood transcriptomes from asymptomatic individuals with early aortic valve calcification identified a highly predictive gene signature of CAVD and of moderate aortic valve calcification in overtly healthy individuals. These data deepen and broaden our understanding of the molecular basis of CAVD and identify a peripheral blood gene signature for the early detection of aortic valve calcification.
Asunto(s)
Estenosis de la Válvula Aórtica/sangre , Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/patología , Calcinosis/sangre , Calcinosis/genética , Enfermedades Fetales/genética , Transcriptoma , Adulto , Válvula Aórtica/embriología , Estenosis de la Válvula Aórtica/embriología , Estenosis de la Válvula Aórtica/epidemiología , Enfermedades Asintomáticas , Biomarcadores/sangre , Calcinosis/embriología , Calcinosis/epidemiología , Estudios de Casos y Controles , Análisis por Conglomerados , Femenino , Edad Gestacional , Humanos , Válvula Mitral/embriología , Válvula Mitral/patología , Embarazo , Estudios Prospectivos , RNA-Seq , España/epidemiología , Válvula Tricúspide/embriología , Válvula Tricúspide/patologíaRESUMEN
Calcific aortic valve disease (CAVD) is the result of maladaptive fibrocalcific processes leading to a progressive thickening and stiffening of aortic valve (AV) leaflets. CAVD is the most common cause of aortic stenosis (AS). At present, there is no effective pharmacotherapy in reducing CAVD progression; when CAVD becomes symptomatic it can only be treated with valve replacement. Inflammation has a key role in AV pathological remodeling; hence, anti-inflammatory therapy has been proposed as a strategy to prevent CAVD. Cyclooxygenase 2 (COX-2) is a key mediator of the inflammation and it is the target of widely used anti-inflammatory drugs. COX-2-inhibitor celecoxib was initially shown to reduce AV calcification in a murine model. However, in contrast to these findings, a recent retrospective clinical analysis found an association between AS and celecoxib use. In the present study, we investigated whether variations in COX-2 expression levels in human AVs may be linked to CAVD. We extracted total RNA from surgically explanted AVs from patients without CAVD or with CAVD. We found that COX-2 mRNA was higher in non-calcific AVs compared to calcific AVs (0.013 ± 0.002 vs. 0.006 ± 0.0004; p < 0.0001). Moreover, we isolated human aortic valve interstitial cells (AVICs) from AVs and found that COX-2 expression is decreased in AVICs from calcific valves compared to AVICs from non-calcific AVs. Furthermore, we observed that COX-2 inhibition with celecoxib induces AVICs trans-differentiation towards a myofibroblast phenotype, and increases the levels of TGF-ß-induced apoptosis, both processes able to promote the formation of calcific nodules. We conclude that reduced COX-2 expression is a characteristic of human AVICs prone to calcification and that COX-2 inhibition may promote aortic valve calcification. Our findings support the notion that celecoxib may facilitate CAVD progression.
Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Ciclooxigenasa 2/genética , Inflamación/tratamiento farmacológico , Factor de Crecimiento Transformador beta/genética , Anciano , Anciano de 80 o más Años , Animales , Válvula Aórtica/efectos de los fármacos , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Apoptosis/efectos de los fármacos , Calcinosis/genética , Calcinosis/patología , Celecoxib/administración & dosificación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Persona de Mediana Edad , ARN Mensajero/genéticaRESUMEN
Osteoblastic differentiation of aortic valve interstitial cells (AVICs) is the central process in the development of calcific aortic valve disease (CAVD). Metformin is a widely used first-line antidiabetic drug, and recently, pleiotropic benefits of metformin beyond hypoglycemia have been reported in the cardiovascular system. Here, we examined the effect of metformin on the osteoblastic differentiation of human AVICs. Our results showed that metformin ameliorated TGF-ß1-induced production of osteogenic proteins Runx2 and osteopontin as well as calcium deposition in the cultured human AVICs. Experiments using AICAR, Compound C and AMPKα siRNA showed that the beneficial effect of metformin on TGF-ß1-induced osteoblastic differentiation of human AVICs was mediated by AMPKα. Moreover, metformin inhibited the TGF-ß1-induced activation of ß-catenin, and ß-catenin siRNA blocked TGF-ß1-induced osteoblastic differentiation of AVICs. Smad2/3 and JNK were phosphorylated to promote the TGF-ß1-induced activation of ß-catenin and osteoblastic differentiation of AVICs, and metformin also alleviated TGF-ß1-induced activation of Smad2/3 and JNK. In conclusion, our results suggest a beneficial effect of metformin based on the prevention of osteoblastic differentiation of human AVICs via inhibition of ß-catenin, which indicates the therapeutic potential of metformin for CAVD.
Asunto(s)
Válvula Aórtica/citología , Diferenciación Celular/efectos de los fármacos , Metformina/farmacología , Osteoblastos/citología , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología , beta Catenina/metabolismo , Adenilato Quinasa/metabolismo , Adulto , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Persona de Mediana Edad , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, including the transforming growth factor beta (TGF ß ) pathway. In this study, we developed a multiscale computational model for TGF ß -stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD and TGF ß signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involving cellular mechanobiology.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Calcinosis , Humanos , Calcio/metabolismo , Factor de Crecimiento Transformador beta , Fibrosis , Células CultivadasRESUMEN
Background: Human Aortic valve interstitial cells (AVICs) from calcific aortic valve disease (CAVD)-affected valves exhibit elevated fibrocalcific activity although the underlying mechanism remains incompletely understood. This study aimed to identify endogenous factors that promote aortic valve fibrocalcification. Methods and results: Proteomic analysis found increased cathepsin D levels in AVICs from CAVD-affected valves compared to AVICs from normal valves, and this finding was validated by immunoblotting. ELISA assay identified exacerbated release of cathepsin D by AVICs of diseased valves. Recombinant human cathepsin D upregulated the expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), collagen I and collagen IV in human AVICs, resulting in the deposition of calcium and collagen. Blocking of the ERK1/2-Sox9 signaling pathway markedly reduced the pro-fibrocalcific effect of cathepsin D. Moreover, normal AVICs express and release greater levels of cathepsin D when exposed to soluble matrilin 2. Knockdown of cathepsin D attenuated the fibrocalcific response induced by soluble matrilin 2. Conclusion: AVICs of diseased aortic valves produce and release greater levels of cathepsin D that exerts a pro-fibrocalcific effect on AVICs through the ERK1/2-Sox9 pathway. Soluble matrilin 2 up-regulates cathepsin D to elevate AVIC fibrocalcific activity. Over-expression of cathepsin D in the aortic valve may enhance the pathobiological activities in AVICs.
RESUMEN
BACKGROUND AND AIMS: Although calcific aortic valve disease (CAVD) is a common valvular disease among elderly populations and its incidence has markedly increased in recent decades, the pathogenesis of CAVD remains unclear. In this study, we explored the potential role of interleukin (IL)-22 and the underlying molecular mechanism in CAVD. METHODS AND RESULTS: Our results showed that IL-22 was upregulated in calcific aortic valves from CAVD patients, and its main sources were CD3+ T cells and CD68+ macrophages. Human aortic valve interstitial cells (VICs) expressed the IL-22-specific receptor IL-22R1, and IL-22R1 expression also was elevated in calcified valves. Treatment of cultured human VICs with recombinant human IL-22 resulted in markedly increased expression of osteogenic proteins Runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP), as well as increased matrix calcium deposition. Moreover, siRNA silencing of IL-22R1 blocked the pro-osteogenic effect of IL-22 in VICs. In IL-22-treated VICs, we also observed increased phosphorylation of JAK3 and STAT3 and nuclear translocation of STAT3. Pretreatment with a specific JAK3 inhibitor, WHIP-154, or siRNA knockout of STAT3 effectively mitigated the IL-22-induced osteoblastic trans-differentiation of human VICs. CONCLUSIONS: Together, these data indicate that IL-22 promotes osteogenic differentiation of VICs by activating JAK3/STAT3 signaling. Based on our results demonstrating a pro-osteogenic role of IL-22 in human aortic valves, pharmacological inhibition of IL-22 signaling may represent a potential strategy for alleviating CAVD.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Interleucina-22 , Anciano , Humanos , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Células Cultivadas , Osteogénesis , ARN Interferente Pequeño/metabolismoRESUMEN
Mitochondrial dysfunction and immune cell infiltration play crucial yet incompletely understood roles in the pathogenesis of calcific aortic valve disease (CAVD). This study aimed to identify immune-related mitochondrial genes critical to the pathological process of CAVD using multiomics approaches. The CIBERSORT algorithm was employed to evaluate immune cell infiltration characteristics in CAVD patients. An integrative analysis combining weighted gene coexpression network analysis (WGCNA), machine learning, and summary data-based Mendelian randomization (SMR) was performed to identify key mitochondrial genes implicated in CAVD. Spearman's rank correlation analysis was also performed to assess the relationships between key mitochondrial genes and infiltrating immune cells. Compared with those in normal aortic valve tissue, an increased proportion of M0 macrophages and resting memory CD4 T cells, along with a decreased proportion of plasma cells and activated dendritic cells, were observed in CAVD patients. Additionally, eight key mitochondrial genes associated with CAVD, including PDK4, LDHB, SLC25A36, ALDH9A1, ECHDC2, AUH, ALDH2, and BNIP3, were identified through the integration of WGCNA and machine learning methods. Subsequent SMR analysis, incorporating multiomics data, such as expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (mQTLs), revealed a significant causal relationship between ALDH9A1 expression and a reduced risk of CAVD. Moreover, ALDH9A1 expression was inversely correlated with M0 macrophages and positively correlated with M2 macrophages. These findings suggest that increased ALDH9A1 expression is significantly associated with a reduced risk of CAVD and that it may exert its protective effects by modulating mitochondrial function and immune cell infiltration. Specifically, ALDH9A1 may contribute to the shift from M0 macrophages to anti-inflammatory M2 macrophages, potentially mitigating the pathological progression of CAVD. In conclusion, ALDH9A1 represents a promising molecular target for the diagnosis and treatment of CAVD. However, further validation through in vivo and n vitro studies is necessary to confirm its role in CAVD pathogenesis and therapeutic potential.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Humanos , Calcinosis/genética , Calcinosis/patología , Calcinosis/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Sitios de Carácter Cuantitativo , Femenino , Redes Reguladoras de Genes , Mitocondrias/metabolismo , Mitocondrias/genética , Aprendizaje Automático , Análisis de la Aleatorización Mendeliana , Anciano , Perfilación de la Expresión Génica , MultiómicaRESUMEN
Heart disease is a leading cause of mortality, with calcific aortic valve disease (CAVD) being the most prevalent subset. Being able to predict this disease in its early stages is important for monitoring patients before they need aortic valve replacement surgery. Thus, this study explored hydrodynamic, mechanical, and hemodynamic differences in healthy and very mildly calcified porcine small intestinal submucosa (PSIS) bioscaffold valves to determine any notable parameters between groups that could, possibly, be used for disease tracking purposes. Three valve groups were tested: raw PSIS as a control and two calcified groups that were seeded with human valvular interstitial and endothelial cells (VICs/VECs) and cultivated in calcifying media. These two calcified groups were cultured in either static or bioreactor-induced oscillatory flow conditions. Hydrodynamic assessments showed metrics were below thresholds associated for even mild calcification. Young's modulus, however, was significantly higher in calcified valves when compared to raw PSIS, indicating the morphological changes to the tissue structure. Fluid-structure interaction (FSI) simulations agreed well with hydrodynamic results and, most notably, showed a significant increase in time-averaged wall shear stress (TAWSS) between raw and calcified groups. We conclude that tracking hemodynamics may be a viable biomarker for early-stage CAVD tracking.
RESUMEN
Calcific aortic valve disease (CAVD) primarily involves osteogenic differentiation in human aortic valve interstitial cells (hVICs). Schisandrol B (SolB), a natural bioactive constituent, has known therapeutic effects on inflammatory and fibrotic disorders. However, its impact on valve calcification has not been reported. We investigated the effect of SolB on osteogenic differentiation of hVICs. Transcriptome sequencing was used to analyze potential molecular pathways affected by SolB treatment. The study also included an in vivo murine model using aortic valve wire injury surgery to observe SolB's effect on valve calcification. SolB inhibited the osteogenic differentiation of hVICs, reversing the increase in calcified nodule formation and osteogenic proteins. In the murine model, SolB significantly decreased the peak velocity of the aortic valve post-injury and reduced valve fibrosis and calcification. Transcriptome sequencing identified the p53 signaling pathway as a key molecular target of SolB, demonstrating its role as a molecular glue in the mouse double minute 2 (MDM2)-p53 interaction, thereby promoting p53 ubiquitination and degradation, which further inhibited p53-related inflammatory and senescence response. These results highlighted therapeutic potential of SolB for CAVD via inhibiting p53 signaling pathway and revealed a new molecular mechanism of SolB which provided a new insight of theraputic mechanism for CAVD.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Ciclooctanos , Lignanos , Proteína p53 Supresora de Tumor , Animales , Humanos , Masculino , Ratones , Válvula Aórtica/patología , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Calcinosis/patología , Calcinosis/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Ciclooctanos/farmacología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Lignanos/farmacología , Ratones Endogámicos C57BL , Osteogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Calcified aortic valve disease (CAVD) is a major non-rheumatic heart valve disease in the world, with a high mortality rate and without suitable pharmaceutical therapy due to its complex mechanisms. Src-associated in mitosis 68-KD (Sam68), an RNA binding protein, has been reported as a signaling adaptor in numerous signaling pathways (Huot in Mol Cell Biol, 29(7), 1933-1943, 2009), particularly in inflammatory signaling pathways. The effects of Sam68 on the osteogenic differentiation process of hVICs and its regulation on signal transducer and activator of transcription 3 (STAT3) signaling pathway have been investigated in this study. Human aortic valve samples detection found that Sam68 expression was up-regulated in human calcific aortic valves. We used tumor necrosis factor α (TNF-α) as an activator for osteogenic differentiation in vitro and the result indicated that Sam68 was highly expressed after TNF-α stimulation. Overexpression of Sam68 promoted osteogenic differentiation of hVICs while Sam68 knockdown reversed this effect. Sam68 interaction with STAT3 was predicted by using String database and was verified in this study. Sam68 knockdown reduced phosphorylation of STAT3 activated by TNF-α and the downstream gene expression, which further influenced autophagy flux in hVICs. STAT3 knockdown alleviated the osteogenic differentiation and calcium deposition promoted by Sam68 overexpression. In conclusion, Sam68 interacts with STAT3 and participates in its phosphorylation to promote osteogenic differentiation of hVICs to induce valve calcification. Thus, Sam68 may be a new therapeutic target for CAVD. Regulatory of Sam68 in TNF-α/STAT3/Autophagy Axis in promoting osteogenesis of hVICs.
RESUMEN
BACKGROUND: CAVD (calcific aortic valve disease) involves an inflammatory response similar to pyroptosis; therefore, we speculated that the progression of pyroptosis might be involved in the pathogenesis of CAVD. METHODS: We first investigated the expression of pyroptosis related genes in human CAVD, non-CAVD control and AS (calcific aortic stenosis) tissues. We further confirmed these genes by using CAVD cell and mouse models. Finally, we explored the functional molecular mechanism in the cell model. RESULTS: Our recent studies found that miR-29b plays an important role in CAVD, and we wanted to further address whether miR-29b is a key factor in the progression of pyroptosis related to CAVD. In this study, we found NLRP3 was highly expressed in CAVD patients and models. In contrast, SOCS1, a suppressor of NLRP3, showed reduced expression in CAVD. Furthermore, we found that ASC, Caspase-1, IL-1ß, Cleaved IL-18 and p-JAK2 were all upregulated in the tissues of CAVD patients, suggesting the likelihood of activation of the inflammasome. Then, we found that miR-29b participated in the NLRP3-regulated CAVD pathway through its target gene STAT3 (signal transducer and activator of transcription 3). Finally, we found that a miR-29b inhibitor could mitigate the increases in osteogenic differentiation and pyroptosis and that SOCS1 showed negative regulation of osteogenic differentiation and pyroptosis in CAVD. CONCLUSION: These findings suggested NLRP3 inflammasome-related genes are highly expressed in CAVD, and miR-29b reverses osteoblastic differentiation of aortic valve interstitial cells by regulating pyroptosis and inhibiting inflammation via the STAT3/SOCS1 pathway.
Asunto(s)
Estenosis de la Válvula Aórtica , MicroARNs , Ratones , Animales , Humanos , Válvula Aórtica/patología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Osteogénesis , Estenosis de la Válvula Aórtica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Inflamasomas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismoRESUMEN
Background: Calcified aortic valve disease (CAVD) is the most prevalent valvular disease that can be treated only through valve replacement. We aimed to explore potential biomarkers and the role of immune cell infiltration in CAVD progression through bioinformatics analysis. Methods: Differentially ex-pressed genes (DEGs) were screened out based on three microarray datasets: GSE12644, GSE51472 and GSE83453. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to evaluate gene expression differences. Machine learning algorithms and DEGs were used to screen key gene. We used CIBERSORT to evaluate the immune cell infiltration of CAVD and evaluated the correlation between the biomarkers and infiltrating immune cells. We also compared bioinformatics analysis results with the valve interstitial cells (VICs) gene expression in single-cell RNA sequencing. Results: Collagen triple helix repeat containing 1 (CTHRC1) was identified as the key gene of CAVD. We identified a cell subtype valve interstitial cells-fibroblast, which was closely associated with fibro-calcific progress of aortic valve. CTHRC1 highly expressed in the VIC subpopulation. Immune infiltration analysis demonstrated that mast cells, B cells, dendritic cells and eosinophils were involved in pathogenesis of CAVD. Correlation analysis demonstrated that CTHRC1 was correlated with mast cells mostly. Conclusions: In summary, the study suggested that CTHRC1 was a key gene of CAVD and CTHRC1 might participate in the potential molecular pathways involved in the connection between infiltrating immune cells and myofibroblast phenotype VICs.
RESUMEN
Calcific aortic valve disease (CAVD) is characterized by progressive stiffening of aortic valve (AV) tissues, inducing stenosis and insufficiency. Bicuspid aortic valve (BAV) is a common congenital defect in which the AV has two leaflets rather than three, with BAV patients developing CAVD decades years earlier than in the general population. Current treatment for CAVD remains surgical replacement with its continued durability problems, as there are no pharmaceutical therapies or other alternative treatments available. Before such therapeutic approaches can be developed, a deeper understanding of CAVD disease mechanisms is clearly required. It is known that AV interstitial cells (AVICs) maintain the AV extracellular matrix and are typically quiescent in the normal state, transitioning into an activated, myofibroblast-like state during periods of growth or disease. One proposed mechanism of CAVD is the subsequent transition of AVICs into an osteoblast-like phenotype. A sensitive indicator of AVIC phenotypic state is enhanced basal contractility (tonus), so that AVICs from diseased AV will exhibit a higher basal tonus level. The goals of the present study were thus to assess the hypothesis that different human CAVD states lead to different biophysical AVIC states. To accomplish this, we characterized AVIC basal tonus behaviors from diseased human AV tissues embedded in 3D hydrogels. Established methods were utilized to track AVIC-induced gel displacements and shape changes after the application of Cytochalasin D (an actin polymerization inhibitor) to depolymerize the AVIC stress fibers. Results indicated that human diseased AVICs from the non-calcified region of TAVs were significantly more activated than AVICs from the corresponding calcified region. In addition, AVICs from the raphe region of BAVs were more activated than from the non-raphe region. Interestingly, we observed significantly greater basal tonus levels in females compared to males. Furthermore, the overall AVIC shape changes after Cytochalasin suggested that AVICs from TAVs and BAVs develop different stress fiber architectures. These findings are the first evidence of sex-specific differences in basal tonus state in human AVICs in varying disease states. Future studies are underway to quantify stress fiber mechanical behaviors to further elucidate CAVD disease mechanisms.
RESUMEN
Background: Calcific aortic valve disease (CAVD) is a common cardiovascular disease with high morbidity and mortality, and no effective prevention or treatment is available. In recent years, increasing evidence has shown that noncoding RNAs (ncRNAs) play an important role in the pathogenesis and prognosis of CAVD. Several associated circular RNAs (circRNAs) have been reported to be involved in CAVD, such as circRIC3 and TGFBR2. However, the limited number of circRNAs identified in CAVD warrants further in-depth investigation, and the comprehensive elucidation of their role in the key mechanisms of this disease is needed. Methods: The expression of circRNAs and microRNAs (miRNAs) were analyzed by RNA sequencing. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to analyze the expression of circRNA ARHGAP10 (circARHGAP10), miR-335-3p, and RUNX2. Luciferase reporter assay, pull-down assay, and RNA binding protein immunoprecipitation (RIP) assay were performed to evaluate the binding of miR-335-3p to circARHGAP10 or RUNX2. Alizarin red S staining showed the formation of calcified nodules in valve interstitial cells (VICs). The expression of circARHGAP10 and miR-335-3p was altered through lentivirus infection. Alkaline phosphatase (ALP) activity was used to verify the correlation between circARHGAP10 and miR-335-3p. The expression of proteins was assessed via Western blot. RNA fluorescence in situ hybridization (FISH) was used to confirm the localization of circARHGAP10 in the cytoplasm of VICs. Immunofluorescence was used to detect the expression level of RUNX2. ApoE-/- mice were used to construct a CAVD model, circARHGAP10 short hairpin RNA (shRNA) and miR-335-3p inhibitor lentivirus were intraperitoneally injected, and scramble and inhibitor normal control (NC) lentivirus were injected as controls, followed by hematoxylin and eosin (HE) staining. Results: Through RNA sequencing, we found that circARHGAP10 (hsa_circ_0008975) was highly expressed in calcific aortic valves. CircARHGAP10 knockdown effectively inhibited the extent of osteogenic differentiation of VICs. We then found that circARHGAP10 was a competing endogenous RNA (ceRNA) of miR-355-3p and that miR-355-3p targeted RUNX2. In vitro experiments confirmed that circARHGAP10 regulated the osteogenic differentiation of VICs through the miR-355-3p/RUNX2 pathway, and this was validated in vivo using an ApoE-/- mouse model. Conclusions: These findings provide a foundation for circRNA-directed diagnostics and therapeutics for CAVD.
RESUMEN
This study focuses on the calcification development and routes of type-1 bicuspid aortic valves based on CT scans and the effect of the unique geometrical shapes of calcium deposits on their fragmentation under balloon valvuloplasty procedures. Towards this goal, the novel Reverse Calcification Technique (RCT), which can predict the calcification progression leading to the current state based on CT scans, is utilized for n = 26 bicuspid aortic valves patients. Two main calcification patterns of type-1 bicuspid aortic valves were identified; asymmetric and symmetric with either partial or full arcs and circles. Subsequently, a calcification fragmentation biomechanical model was introduced to study the balloon valvuloplasty procedure prior to transcatheter aortic valve replacement implantation that allows better device expansion. To achieve this goal, six representative stenotic bicuspid aortic valves of different calcification patterns were investigated. It was found that the distinct geometrical shape of the calcium deposits had a significant effect on the cracks' initiations. Full or partial circle deposits had stronger resistance to fragmentation and mainly remained intact, yet, arc-shaped pattern deposits resulted in multiple cracks in bottleneck regions. The proposed biomechanical computational models could help assess calcification fragmentation patterns toward improving treatment approaches in stenotic bicuspid aortic valve patients, particularly for the off-label use of transcatheter aortic valve replacement.
Asunto(s)
Estenosis de la Válvula Aórtica , Valvuloplastia con Balón , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Válvula Mitral/cirugía , Calcio , Calcinosis/diagnóstico por imagen , Resultado del TratamientoRESUMEN
Calcific aortic valve disease (CAVD) is the most prevalent human valve disease worldwide. Multiple factors induce "irreversible" pathological changes in the aortic valve leaflets, resulting in changes in cardiac hemodynamics, eventually leading to heart failure. However, no effective pharmaceutical interventions have been found and prosthetic valve replacement is the only curative approach. Glioma-associated oncogene 1 (Gli1) exerts a regulatory role on cardiovascular diseases, and it is already a therapeutic target to combat tumors. Our research aimed to explore the role and basic mechanism of Gli1 in CAVD, to pave the way for the discovery of effective drugs in the treatment of CAVD. Human aortic valve tissues were obtained to evaluate Gli1 expression and primary valve interstitial cells (VICs) were used to perform related experiments. The results showed that Gli1 promoted cell proliferation and significantly accelerated cell osteogenic transformation through the up-regulation of the osteogenic factors Runx2 and Alp, in turn through the AKT signaling pathway by targeting P130cas expression. Furthermore, Gli1 was activated by TGF-ß and sonic hedgehog through the canonical and non-canonical Hedgehog signaling pathways in VICs. Our results indicated that Gli1 promoted cell proliferation and accelerated cell osteogenic transformation in VICs, providing a new strategy for the therapy of CAVD by targeting Gli1.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Válvula Aórtica/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/farmacología , Células Cultivadas , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Osteogénesis/genéticaRESUMEN
Background: Non-rheumatic heart valve disease (NRVD) is a common cardiovascular disease, whereas calcific aortic valve disease (CAVD) is a type of disease with the fastest-growing mortality and disability-adjusted life years (DALYs). This study presents an overview of the trends noted in the DALY, CAVD mortality, and the modiï¬able risk factors in the last 30 years, across 204 countries and territories, and their relationship with the period, age, and birth cohort. Methods: Data were obtained from the Global Burden of Disease (GBD) 2019 database. An age-period-cohort (APC) model was used to assess general annual percentage changes in DALYs and mortality over the past 30 years in 204 countries and territories. Results: In 2019, the age-standardized mortality rate for the entire population in areas with a high socio-demographic index (SDI) was more than 4 times higher than that in low-SDI areas. From 1990 to 2019, the net drift in mortality for the whole population was from -2.1% [95% confidence interval (CI): -2.39% to -1.82%] per year in high-SDI regions to 0.05% (95% CI: -0.13% to 0.23%) per year in low- to medium-SDI regions. The trend of DALYs was similar to that of mortality. The age-wise distribution of deaths exhibited a shift toward older populations in high-SDI regions globally, except for Qatar, Saudi Arabia, and the United Arab Emirates. Over time, in most medium, medium-low, and low SDI regions, there was no significant improvement in the period and birth cohort or even an unfavorable or worsening risk. The main variable risk factors of CAVD death and DALYs lost were high sodium diet, high systolic blood pressure, and lead exposure. Those risk factors only showed a significant downward trend in middle- and high-SDI regions. Conclusions: Health disparities between regions for CAVD are widening and could lead to a heavy disease burden in the future. Health authorities and policymakers in low SDI areas, in particular, need to consider improving resource allocation, increasing access to medical resources, and controlling variable risk factors to stem the growth of the disease burden.