Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.474
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(5): 1293-1307.e16, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031008

RESUMEN

The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.


Asunto(s)
Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Neuronas/metabolismo , Fases del Sueño/fisiología , Animales , Colecistoquinina/metabolismo , Hipotálamo/citología , Mesencéfalo/citología , Ratones , Ratones Transgénicos , Neuronas/citología , Optogenética
2.
Cell ; 167(3): 739-749.e11, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720449

RESUMEN

G protein-coupled receptor (GPCR) signaling, mediated by hetero-trimeric G proteins, can be differentially controlled by agonists. At a molecular level, this is thought to occur principally via stabilization of distinct receptor conformations by individual ligands. These distinct conformations control subsequent recruitment of transducer and effector proteins. Here, we report that ligand efficacy at the calcitonin GPCR (CTR) is also correlated with ligand-dependent alterations to G protein conformation. We observe ligand-dependent differences in the sensitivity of the G protein ternary complex to disruption by GTP, due to conformational differences in the receptor-bound G protein hetero-trimer. This results in divergent agonist-dependent receptor-residency times for the hetero-trimeric G protein and different accumulation rates for downstream second messengers. This study demonstrates that factors influencing efficacy extend beyond receptor conformation(s) and expands understanding of the molecular basis for how G proteins control/influence efficacy. This has important implications for the mechanisms that underlie ligand-mediated biased agonism. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Unión al GTP/química , Guanosina Trifosfato/farmacología , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/química , Adenosina Difosfato/biosíntesis , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Ligandos , Conformación Proteica , Multimerización de Proteína , Receptores de Calcitonina/metabolismo
3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39109637

RESUMEN

Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.


Asunto(s)
Calcitonina , Linaje de la Célula , Ciona intestinalis , Endodermo , Cresta Neural , Células Neuroendocrinas , Animales , Endodermo/metabolismo , Endodermo/citología , Calcitonina/metabolismo , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/citología , Ciona intestinalis/metabolismo , Ciona intestinalis/embriología , Cresta Neural/metabolismo , Cresta Neural/citología , Embrión de Pollo , Ratones , Vertebrados/embriología , Vertebrados/metabolismo , Pez Cebra/embriología , Anfioxos/embriología , Anfioxos/metabolismo , Anfioxos/genética , Cuerpo Ultimobranquial/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(24): e2401929121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843183

RESUMEN

Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.


Asunto(s)
Conducta Adictiva , Péptido Relacionado con Gen de Calcitonina , Neuronas , Núcleos Parabraquiales , Animales , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Conducta Adictiva/metabolismo , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Cocaína/farmacología , Conducta Animal/fisiología
5.
Proc Natl Acad Sci U S A ; 120(22): e2302509120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216549

RESUMEN

Upon its mucosal transmission, HIV type 1 (HIV-1) rapidly targets genital antigen-presenting Langerhans cells (LCs), which subsequently transfer infectious virus to CD4+ T cells. We previously described an inhibitory neuroimmune cross talk, whereby calcitonin gene-related peptide (CGRP), a neuropeptide secreted by peripheral pain-sensing nociceptor neurons innervating all mucosal epithelia and associating with LCs, strongly inhibits HIV-1 transfer. As nociceptors secret CGRP following the activation of their Ca2+ ion channel transient receptor potential vanilloid 1 (TRPV1), and as we reported that LCs secret low levels of CGRP, we investigated whether LCs express functional TRPV1. We found that human LCs expressed mRNA and protein of TRPV1, which was functional and induced Ca2+ influx following activation with TRPV1 agonists, including capsaicin (CP). The treatment of LCs with TRPV1 agonists also increased CGRP secretion, reaching its anti-HIV-1 inhibitory concentrations. Accordingly, CP pretreatment significantly inhibited LCs-mediated HIV-1 transfer to CD4+ T cells, which was abrogated by both TRPV1 and CGRP receptor antagonists. Like CGRP, CP-induced inhibition of HIV-1 transfer was mediated via increased CCL3 secretion and HIV-1 degradation. CP also inhibited direct CD4+ T cells HIV-1 infection, but in CGRP-independent manners. Finally, pretreatment of inner foreskin tissue explants with CP markedly increased CGRP and CCL3 secretion, and upon subsequent polarized exposure to HIV-1, inhibited an increase in LC-T cell conjugate formation and consequently T cell infection. Our results reveal that TRPV1 activation in human LCs and CD4+ T cells inhibits mucosal HIV-1 infection, via CGRP-dependent/independent mechanisms. Formulations containing TRPV1 agonists, already approved for pain relief, could hence be useful against HIV-1.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Infecciones por VIH , Humanos , Péptido Relacionado con Gen de Calcitonina/farmacología , Linfocitos T/metabolismo , Células de Langerhans/metabolismo , Membrana Mucosa/metabolismo , Capsaicina/farmacología , Dolor/metabolismo , Infecciones por VIH/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
6.
Genes Dev ; 32(2): 140-155, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440246

RESUMEN

Daily body temperature rhythm (BTR) is essential for maintaining homeostasis. BTR is regulated separately from locomotor activity rhythms, but its molecular basis is largely unknown. While mammals internally regulate BTR, ectotherms, including Drosophila, exhibit temperature preference rhythm (TPR) behavior to regulate BTR. Here, we demonstrate that the diuretic hormone 31 receptor (DH31R) mediates TPR during the active phase in Drosophila DH31R is expressed in clock cells, and its ligand, DH31, acts on clock cells to regulate TPR during the active phase. Surprisingly, the mouse homolog of DH31R, calcitonin receptor (Calcr), is expressed in the suprachiasmatic nucleus (SCN) and mediates body temperature fluctuations during the active phase in mice. Importantly, DH31R and Calcr are not required for coordinating locomotor activity rhythms. Our results represent the first molecular evidence that BTR is regulated distinctly from locomotor activity rhythms and show that DH31R/Calcr is an ancient specific mediator of BTR during the active phase in organisms ranging from ectotherms to endotherms.


Asunto(s)
Regulación de la Temperatura Corporal , Proteínas de Drosophila/fisiología , Receptores de Calcitonina/fisiología , Animales , Encéfalo/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hormonas de Insectos/fisiología , Locomoción , Ratones , Mutación , Neuropéptidos/fisiología , Receptores de Calcitonina/metabolismo , Núcleo Supraquiasmático/metabolismo
7.
J Biol Chem ; 300(6): 107399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777147

RESUMEN

The G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) mediates essential functions in several cell types and is implicated in cardiovascular pathologies, skin diseases, migraine, and cancer. To date, the network of proteins interacting with CLR ("CLR interactome") in primary cells, where this GPCR is expressed at endogenous (physiologically relevant) levels, remains unknown. To address this knowledge gap, we established a novel integrative methodological workflow/approach for conducting a comprehensive/proteome-wide analysis of Homo sapiens CLR interactome. We used primary human dermal lymphatic endothelial cells and combined immunoprecipitation utilizing anti-human CLR antibody with label-free quantitative nano LC-MS/MS and quantitative in situ proximity ligation assay. By using this workflow, we identified 37 proteins interacting with endogenously expressed CLR amongst 4902 detected members of the cellular proteome (by quantitative nano LC-MS/MS) and revealed direct interactions of two kinases and two transporters with this GPCR (by in situ proximity ligation assay). All identified interactors have not been previously reported as members of CLR interactome. Our approach and findings uncover the hitherto unrecognized compositional complexity of the interactome of endogenously expressed CLR and contribute to fundamental understanding of the biology of this GPCR. Collectively, our study provides a first-of-its-kind integrative methodological approach and datasets as valuable resources and robust platform/springboard for advancing the discovery and comprehensive characterization of physiologically relevant CLR interactome at a proteome-wide level in a range of cell types and diseases in future studies.


Asunto(s)
Proteína Similar al Receptor de Calcitonina , Proteómica , Humanos , Proteómica/métodos , Proteína Similar al Receptor de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/genética , Espectrometría de Masas en Tándem/métodos , Proteoma/metabolismo , Proteoma/análisis , Células Endoteliales/metabolismo , Cromatografía Liquida/métodos
8.
Cell Mol Life Sci ; 81(1): 369, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182194

RESUMEN

Calcium-containing stones represent the most common form of kidney calculi, frequently linked to idiopathic hypercalciuria, though their precise pathogenesis remains elusive. This research aimed to elucidate the molecular mechanisms involved by employing urinary exosomal microRNAs as proxies for renal tissue analysis. Elevated miR-148b-5p levels were observed in exosomes derived from patients with kidney stones. Systemic administration of miR-148b-5p in rat models resulted in heightened urinary calcium excretion, whereas its inhibition reduced stone formation. RNA immunoprecipitation combined with deep sequencing identified miR-148b-5p as a suppressor of calcitonin receptor (Calcr) expression, thereby promoting urinary calcium excretion and stone formation. Mice deficient in Calcr in distal epithelial cells demonstrated elevated urinary calcium excretion and renal calcification. Mechanistically, miR-148b-5p regulated Calcr through the circRNA-83536/miR-24-3p signaling pathway. Human kidney tissue samples corroborated these results. In summary, miR-148b-5p regulates the formation of calcium-containing kidney stones via the circRNA-83536/miR-24-3p/Calcr axis, presenting a potential target for novel therapeutic interventions to prevent calcium nephrolithiasis.


Asunto(s)
Calcio , Hipercalciuria , MicroARNs , Nefrolitiasis , Animales , Humanos , Masculino , Ratones , Ratas , Calcio/metabolismo , Exosomas/metabolismo , Exosomas/genética , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/patología , Riñón/metabolismo , Riñón/patología , Cálculos Renales/metabolismo , Cálculos Renales/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Nefrolitiasis/metabolismo , Nefrolitiasis/genética , Nefrolitiasis/patología , Ratas Sprague-Dawley , Transducción de Señal
9.
Mol Pain ; 20: 17448069241232349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288478

RESUMEN

Background. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. Recent studies have shown that over representation of calcitonin gene-related peptides (CGRP) may activate nociceptive signaling following nerve injury. Silent information regulator 1 (SIRT1) is ubiquitously expressed in the dorsal horn of the spinal cord and plays a role in the pathogenesis of LDH. In this study, we investigated the analgesic effects of PD1 and elucidated the impact of neurogenic inflammation in the pathogenesis of neuropathic pain induced by non-compressive lumbar disc herniation (NCLDH) in a rat model. Methods. NCLDH models were established by applying protruding autologous nucleus pulposus to the L5 Dorsal root ganglion (DRG). PD1, SIRT1 antagonist or agonist, CGRP or antagonist were administered as daily intrathecal injections for three consecutive days postoperatively. Behavioral tests were conducted to assess mechanical and thermal hyperalgesia. The ipsilateral lumbar (L4-6) segment of the spinal dorsal horn was isolated for further analysis. Alterations in the release of SIRT1 and CGRP were explored using western blot and immunofluorescence. Results. Application of protruded nucleus (NP) materials to the DRG induced mechanical and thermal allodynia symptoms, and deregulated the expression of pro-inflammatory and anti-inflammatory cytokines in rats. Intrathecal delivery of PD1 significantly reversed the NCLDH-induced imbalance in neuro-inflammatory response and alleviated the symptoms of mechanical and thermal hyperalgesia. In addition, NP application to the DGRs resulted the spinal upregulation of CGRP and SIRT1 expression, which was almost restored by intrathecal injection of PD1 in a dose-dependent manner. SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. Conclusion. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.


Asunto(s)
Ácidos Docosahexaenoicos , Desplazamiento del Disco Intervertebral , Ratas , Animales , Desplazamiento del Disco Intervertebral/tratamiento farmacológico , Desplazamiento del Disco Intervertebral/complicaciones , Hiperalgesia/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ratas Sprague-Dawley , Sirtuina 1/metabolismo , Calcitonina/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Analgésicos/farmacología , Ganglios Espinales/metabolismo , Modelos Animales de Enfermedad
10.
Exp Dermatol ; 33(8): e15158, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39115029

RESUMEN

S100 proteins comprise a family of structurally related proteins that are calcium-sensitive. S100 proteins have been found to play various roles in regulation of cell apoptosis, cell proliferation and differentiation, cell migration and invasion, energy metabolism, calcium homeostasis, protein phosphorylation, anti-microbial activity and inflammation in a variety of cell types. While the specific function of many S100 proteins remains unknown, some of the S100 proteins serve as disease biomarkers as well as possible therapeutic targets in skin diseases. Interface dermatitis (ID) is a histopathological term that covers many different skin conditions including cutaneous lupus erythematosus, lichen planus, and dermatomyositis. These pathologies share similar histological features, which include basal cell vacuolization and lymphocytic infiltration at the dermal-epidermal junction. In this review, we summarize how the S100 protein family contributes to both homeostatic and inflammatory processes in the skin. We also highlight the role of S100 proteins in neuronal signalling, describing how this might contribute to neuroimmune interactions in ID and other skin pathologies. Last, we discuss what is known about the S100 family proteins as both biomarkers and potential treatment targets in specific pathologies.


Asunto(s)
Homeostasis , Proteínas S100 , Piel , Humanos , Proteínas S100/metabolismo , Piel/metabolismo , Piel/patología , Dermatitis/metabolismo , Enfermedades de la Piel/metabolismo , Biomarcadores/metabolismo , Animales
11.
Allergy ; 79(5): 1271-1290, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38164798

RESUMEN

BACKGROUND: Itch is the most common symptom of atopic dermatitis (AD) and significantly decreases the quality of life. Skin microbiome is involved in AD pathogenesis, whereas its role in the regulation of itch remains elusive. In this study, we aimed to investigate the effects of skin microbial metabolite propionate on acute and chronic pruritus and to explore the mechanism. METHODS: Using various mouse models of itch, the roles of propionate were explored by behavioral tests and histopathology/immunofluorescent analysis. Primary-cultured dorsal root ganglion neurons and HEK293 cells expressing recombinant human TRP channels were utilized for in vitro calcium imaging/in vivo miniature two-photon imaging in combination with electrophysiology and molecular docking approaches for investigation of the mechanism. RESULTS: Propionate significantly alleviated itch and alloknesis in various mouse models of pruritus and AD and decreased the density of intraepidermal nerve fibers. Propionate reduced the responsiveness of dorsal root ganglion neurons to pruritogens in vitro, attenuated the hyper-excitability in sensory neurons in MC903-induced AD model, and inhibited capsaicin-evoked hTRPV1 currents (IC50 = 20.08 ± 1.11 µM) via interacting with the vanilloid binding site. Propionate also decreased the secretion of calcitonin gene-related peptide by nerves in MC903-induced AD mouse model, which further attenuated itch and skin inflammation. CONCLUSION: Our study revealed a protective effect of propionate against persistent itch through direct modulation of sensory TRP channels and neuropeptide production in neurons. Regulation of itch via the skin microbiome might be a novel strategy for the treatment of AD.


Asunto(s)
Dermatitis Atópica , Modelos Animales de Enfermedad , Ganglios Espinales , Propionatos , Prurito , Canales de Potencial de Receptor Transitorio , Animales , Ganglios Espinales/metabolismo , Dermatitis Atópica/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Prurito/etiología , Prurito/metabolismo , Prurito/tratamiento farmacológico , Ratones , Humanos , Propionatos/farmacología , Propionatos/uso terapéutico , Canales de Potencial de Receptor Transitorio/metabolismo , Células Receptoras Sensoriales/metabolismo , Células HEK293 , Masculino , Péptido Relacionado con Gen de Calcitonina/metabolismo , Simulación del Acoplamiento Molecular
12.
Cell Mol Neurobiol ; 44(1): 22, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363424

RESUMEN

Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA. Pain behavior was then observed. Temporomandibular joint (TMJ) and the TG were collected, and immunohistochemistry, immunofluorescence (IF) staining, and RT-qPCR were used to examine the expression of CGRP and macrophage-related factors. To investigate the impact of CGRP on macrophage polarization, both CGRP and its antagonist, CGRP 8-37, were separately administered directly within the TG. Statistical analysis revealed that within 24 h of inducing temporomandibular arthritis using CFA, there was a significant surge in CD86 positive macrophages within the ganglion. These macrophages peaked on the 7th day before beginning their decline. In this context, it's noteworthy that administering CGRP to the trigeminal ganglion can prompt these macrophages to adopt the M2 phenotype. Intriguingly, this study demonstrates that injecting the CGRP receptor antagonist (CGRP 8-37) to the ganglion counteracts this shift towards the M2 phenotype. Supporting these in vivo observations, we found that in vitro, CGRP indeed fosters the M2-type polarization of macrophages. CGRP can facilitate the conversion of macrophages into the M2 phenotype. The phenotypic alterations of macrophages within the TG could be instrumental in initiating and further driving the progression of TMJ disorders.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Macrófagos , Trastornos de la Articulación Temporomandibular , Ganglio del Trigémino , Animales , Ratas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Macrófagos/metabolismo , Dolor/metabolismo , Trastornos de la Articulación Temporomandibular/metabolismo , Ganglio del Trigémino/metabolismo
13.
Synapse ; 78(1): e22281, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694983

RESUMEN

In mouse motor synapses, the exogenous application of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG) increases acetylcholine (ACh) quantal size due to the activation of CB1 receptors and the stimulation of ACh vesicular uptake. In the present study, microelectrode recordings of miniature endplate potentials (MEPP) revealed that this effect of 2-AG is independent of brain-derived neurotrophic factor (BDNF) signaling but involves the activation of calcitonin gene-related peptide (CGRP) receptors along with CB1 receptors. Potentiation of MEPP amplitude in the presence of 2-AG was prevented by blockers of CGRP receptors and ryanodine receptors (RyR) and by inhibitors of phospholipase C (PLC) and Ca2+ /calmodulin-dependent protein kinase II (CaMKII). Therefore, we suggest a hypothetical chain of events, which starts from the activation of presynaptic CB1 receptors, involves PLC, RyR, and CaMKII, and results in CGRP release with the subsequent activation of presynaptic CGRP receptors. Activation of CGRP receptors is probably a part of a complex molecular cascade leading to the 2-AG-induced increase in ACh quantal size and MEPP amplitude. We propose that the same chain of events may also take place if 2-AG is endogenously produced in mouse motor synapses, because the increase in MEPP amplitude that follows after prolonged tetanic muscle contractions (30 Hz, 2 min) was prevented by the blocking of CB1 receptors. This work may help to unveil the previously unknown aspects of the functional interaction between ECs and peptide modulators aimed at the regulation of quantal size and synaptic transmission.


Asunto(s)
Ácidos Araquidónicos , Endocannabinoides , Glicéridos , Unión Neuromuscular , Ratones , Animales , Unión Neuromuscular/metabolismo , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Sinapsis/metabolismo
14.
Cephalalgia ; 44(1): 3331024231222914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38170954

RESUMEN

BACKGROUND: A previously unreported systemic reaction to Galcanezumab (Emgality) is described. Galcanezumab is a humanized monoclonal antibody designed to bind to calcitonin gene-related peptide, a neuropeptide associated with neurogenic inflammation during migraine attacks. Although clinical trials showed that Galcanezumab had few adverse reactions (injection site related erythema, pruritus, and swelling), no systemic drug reactions have been noted. CASE REPORT: A 50-year-old female with chronic migraine, mast cell disorder, Hashimoto's disease, positive antinuclear antibody and positive anti-cyclic citrullinated peptide antibody not on immune modulators received the initial dose of galcanezumab 240 mg after failing multiple migraine treatments. The following day, she developed injection site reaction, malar erythema and flu-like symptoms. Symptoms progressed the second day after injection, and she developed swelling in her lips and throat. Intravenous steroid and antihistamines improved airway symptoms, and the remaining symptoms improved after a course of oral steroids. CONCLUSIONS: Delayed system allergic reaction to Galcanezumab requiring emergency intervention may occur. A history of autoimmune disorder may be a predisposing factor.


Asunto(s)
Hipersensibilidad , Trastornos Migrañosos , Humanos , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Método Doble Ciego , Trastornos Migrañosos/tratamiento farmacológico , Eritema
15.
Cephalalgia ; 44(1): 3331024231226186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38215228

RESUMEN

BACKGROUND: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS: In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS: Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS: Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Piperidinas , Piridinas , Pirroles , Receptores de Péptido Relacionado con el Gen de Calcitonina , Compuestos de Espiro , Humanos , Ratas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Hiperalgesia/tratamiento farmacológico
16.
Cephalalgia ; 44(3): 3331024241238153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477313

RESUMEN

BACKGROUND: Women show increased prevalence and severity of migraine compared to men. Whether small molecule calcitonin gene-related peptide receptor (CGRP-R) antagonists (i.e., gepants) and monoclonal antibodies targeting either the CGRP-R or the CGRP peptide might show sexually dimorphic outcomes for acute and preventive therapy has not been established. METHODS: We conducted a subpopulation analysis of available published data from FDA reviews to evaluate potential sex differences in the response rates of ubrogepant, rimegepant and zavegepant for acute migraine therapy. Available data from FDA reviews of erenumab, fremanezumab, galcanezumab and eptinezumab, approved CGRP-R and CGRP monoclonal antibodies and of atogepant were examined for prevention outcomes based on patient sex. Preventive outcomes were analyzed separately for patients with episodic migraine and chronic migraine. RESULTS: In women, the three approved gepants produced statistically significant drug effects regardless of dose tested on the FDA mandated co-primary endpoints, the proportion of patients achieving two-hour pain-freedom and the proportion of patients free of their most bothersome symptom at two hours post-dose. In women, the average placebo-subtracted two-hour pain-freedom proportion was 9.5% (CI: 7.4 to 11.6) and the average numbers needed to treat was 11. The free from most bothersome symptom at two hours outcomes were also significant in women. The gepant drugs did not reach statistically significant effects on the two-hour pain-freedom endpoint in the men, with an average drug effect of 2.8% (CI: -2.5 to 8.2) and an average number needed to treat of 36. For freedom from most bothersome symptom at two hours post-dose endpoint, differences were not significant in male patients. The treatment effect in each of the gepant studies was always numerically greater in women than in men. In evaluation of prevention outcomes with the antibodies or atogepant using the change from the specified primary endpoint (e.g., monthly migraine days), the observed treatment effect for episodic migraine patients almost always favored drug over placebo in both women and men. For chronic migraine patients the treatment effects of antibodies were similar in men and women and always favored the drug treated group.Conclusion/Interpretation: Small molecule CGRP-R antagonists are effective in acute migraine therapy in women but available data do not demonstrate effectiveness in men. CGRP-targeting therapies are effective for migraine prevention in both male and female episodic migraine patients but possible sex differences remain uncertain. In male and female chronic migraine patients, CGRP/CGRP-R antibodies were similarly effective. The data highlight possible differential effects of CGRP targeted therapies in different patient populations and the need for increased understanding of CGRP neurobiology in men and women.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Piperidinas , Piridinas , Pirroles , Compuestos de Espiro , Femenino , Humanos , Masculino , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Dolor/tratamiento farmacológico
17.
Cephalalgia ; 44(2): 3331024231222923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307497

RESUMEN

BACKGROUND: The present study aimed to describe the prevalence and evolution of depressive symptoms in a cohort of migraine patients treated with anti-CGRP monoclonal antibodies. METHODS: This is an exploratory, prospective, unicentric, one-year longitudinal study. We included migraine patients who started treatment with anti-CGRP monoclonal antibodies. Baseline demographic data, medical history, concomitant medication and migraine characteristics were collected. The presence of depressive symptoms was evaluated using the Beck Depression Inventory-II quarterly and treatment response was categorized according to the reduction in monthly headache days. A generalized mixed-effect regression model was used to model depression score over a one-year treatment taking into account frequency response rates. RESULTS: We included 577 patients: 84.2% females; median (range) age 47.0 (39.0-53.0) years, 46.1% (266/577) of them presented depressive symptoms at baseline (16.1% mild, 13.3% moderate and 16.6% severe). After six-month treatment, 47.4% (126/266) reduced headache frequency ≥50% after one year and 63.5% (169/266) achieved a clinically significant improvement in depression symptoms. We observed a 30.8% (-50.0%, -3.2%) main reduction in depression score during the first quarter. The improvement in depression symptoms was independently associated with headache frequency response: non-responders, -25.0% (-43.9%, -1.1%); partial responders, -30.2% (-51.3%, -7.6%); and good responders, -33.3% (-54.6%, -7.5%). CONCLUSIONS: Anti-CGRP monoclonal antibodies targeting CGRP are effective in reducing depressive symptoms in patients with migraine. The main change of depression score happens during the first three months of treatment. The reduction in depressive symptoms is independent of migraine frequency improvement.


Asunto(s)
Depresión , Trastornos Migrañosos , Femenino , Humanos , Persona de Mediana Edad , Masculino , Depresión/tratamiento farmacológico , Depresión/epidemiología , Estudios Longitudinales , Estudios Prospectivos , Péptido Relacionado con Gen de Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/epidemiología , Cefalea/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico
18.
Eur J Neurol ; : e16437, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132915

RESUMEN

BACKGROUND AND PURPOSE: HER-MES was the first head-to-head study of erenumab against topiramate (standard of care). This post hoc analysis of the HER-MES study evaluated the effect of erenumab versus topiramate on patient-reported outcomes at week 24. METHODS: Adult patients with episodic or chronic migraine (n = 777) were randomized (1:1) to monthly subcutaneous erenumab (n = 389) or daily oral topiramate (n = 388). Migraine-related disability, as measured by the Headache Impact Test 6 (HIT-6) and Short Form 36 Health Survey version 2 (SF-36v2), was analysed in the entire study cohort and true completers. RESULTS: In the erenumab group (vs. topiramate), significant improvements were reported in Headache Impact Test 6 total scores (composite populations, -10.88 vs. -7.72; true completers, -11.92 vs. -10.61) and a higher proportion of patients achieved a ≥5-point reduction from baseline with erenumab (composite populations, 72.2% vs. 53.9%; true completers, 79.64% vs. 71.43%). The adjusted mean change from baseline in the SF-36v2 score was greater with erenumab for both physical component summary (composite population, 5.48 vs. 3.63; true completers, 5.95 vs. 5.23) and mental component summary (composite populations, 1.00 vs. -1.18; true completers, 1.74 vs. -0.33). A higher proportion of patients on erenumab versus topiramate had a ≥5-point improvement in SF-36v2 for the physical component summary (composite populations, 47.7% vs. 37.4%; true completers, 52.1% vs. 48.9%) and mental component summary (composite populations, 25.3% vs. 16.8%; true completers, 27.3% vs. 17.7%). CONCLUSIONS: This post hoc analysis demonstrated that patients treated with erenumab had significant improvements in headache impact and quality of life as measured by patient-reported outcomes versus patients treated with topiramate.

19.
Bioorg Med Chem Lett ; 112: 129944, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39233187

RESUMEN

A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity. These studies identified compound 23, a structurally novel potent, orally bioavailable CGRP receptor antagonist.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Piperidinas , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/química , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/síntesis química , Relación Estructura-Actividad , Humanos , Piperidinas/química , Piperidinas/farmacología , Piperidinas/síntesis química , Animales , Ratas , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Estructura Molecular
20.
Scand J Gastroenterol ; 59(5): 518-523, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343278

RESUMEN

Reflux hypersensitivity (RH) is a subtype of gastroesophageal reflux disease. The Rome IV criteria separated RH from the original nonerosive reflux disease subgroup and classified it as a new functional oesophageal disease. Recently, the pathogenesis of RH has become the focus of research. According to the latest research reports, upregulation of acid-sensitive receptors, distribution of calcitonin gene-related peptide-positive nerve fibres, and psychiatric comorbidity have key roles in the pathogenesis of RH. This work reviews the latest findings regarding RH mechanisms.


Asunto(s)
Reflujo Gastroesofágico , Humanos , Reflujo Gastroesofágico/fisiopatología , Péptido Relacionado con Gen de Calcitonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA