RESUMEN
Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.
Asunto(s)
Inmunoterapia , Lípidos , ARN , Microambiente Tumoral , Animales , Perros , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , ARN/química , ARN/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/químicaRESUMEN
Tumor-infiltrating CD8 T cells were found to frequently express the inhibitory receptor NKG2A, particularly in immune-reactive environments and after therapeutic cancer vaccination. High-dimensional cluster analysis demonstrated that NKG2A marks a unique immune effector subset preferentially co-expressing the tissue-resident CD103 molecule, but not immune checkpoint inhibitors. To examine whether NKG2A represented an adaptive resistance mechanism to cancer vaccination, we blocked the receptor with an antibody and knocked out its ligand Qa-1b, the conserved ortholog of HLA-E, in four mouse tumor models. The impact of therapeutic vaccines was greatly potentiated by disruption of the NKG2A/Qa-1b axis even in a PD-1 refractory mouse model. NKG2A blockade therapy operated through CD8 T cells, but not NK cells. These findings indicate that NKG2A-blocking antibodies might improve clinical responses to therapeutic cancer vaccines.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Inmunidad Celular , Subfamília C de Receptores Similares a Lectina de Células NK , Proteínas de Neoplasias , Neoplasias Experimentales , Vacunación , Animales , Anticuerpos Antineoplásicos/inmunología , Antígenos CD/inmunología , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Cadenas alfa de Integrinas/inmunología , Ratones , Subfamília C de Receptores Similares a Lectina de Células NK/antagonistas & inhibidores , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Antígenos HLA-ERESUMEN
The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.
Asunto(s)
Neoplasias , Humanos , Citocinas , Transducción de Señal , Inmunidad Innata , Inmunoterapia , Microambiente TumoralRESUMEN
Personalized cancer immunotherapies such as therapeutic vaccines and adoptive transfer of T cell receptor-transgenic T cells rely on the presentation of tumor-specific peptides by human leukocyte antigen class I molecules to cytotoxic T cells. Such neoepitopes can for example arise from somatic mutations and their identification is crucial for the rational design of new therapeutic interventions. Liquid chromatography mass spectrometry (LC-MS)-based immunopeptidomics is the only method to directly prove actual peptide presentation and we have developed a parameter optimization workflow to tune targeted assays for maximum detection sensitivity on a per peptide basis, termed optiPRM. Optimization of collision energy using optiPRM allows for the improved detection of low abundant peptides that are very hard to detect using standard parameters. Applying this to immunopeptidomics, we detected a neoepitope in a patient-derived xenograft from as little as 2.5 × 106 cells input. Application of the workflow on small patient tumor samples allowed for the detection of five mutation-derived neoepitopes in three patients. One neoepitope was confirmed to be recognized by patient T cells. In conclusion, optiPRM, a targeted MS workflow reaching ultra-high sensitivity by per peptide parameter optimization, makes the identification of actionable neoepitopes possible from sample sizes usually available in the clinic.
Asunto(s)
Mutación , Proteómica , Flujo de Trabajo , Humanos , Cromatografía Liquida , Proteómica/métodos , Espectrometría de Masas/métodos , Epítopos/inmunología , Neoplasias/inmunología , Péptidos , Animales , Antígenos de Neoplasias/inmunología , Ratones , Cromatografía Líquida con Espectrometría de MasasRESUMEN
In the rapidly evolving landscape of medical research, the emergence of RNA-based therapeutics is paradigm shifting. It is mainly driven by the molecular adaptability and capacity to provide precision in targeting. The coronavirus disease 2019 pandemic crisis underscored the effectiveness of the mRNA therapeutic development platform and brought it to the forefront of RNA-based interventions. These RNA-based therapeutic approaches can reshape gene expression, manipulate cellular functions, and correct the aberrant molecular processes underlying various diseases. The new technologies hold the potential to engineer and deliver tailored therapeutic agents to tackle genetic disorders, cancers, and infectious diseases in a highly personalized and precisely tuned manner. The review discusses the most recent advancements in the field of mRNA therapeutics for cancer treatment, with a focus on the features of the most utilized RNA-based therapeutic interventions, current pre-clinical and clinical developments, and the remaining challenges in delivery strategies, effectiveness, and safety considerations.
Asunto(s)
Neoplasias , ARN Mensajero , Humanos , Neoplasias/terapia , Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , COVID-19/terapia , Terapia Genética/métodos , SARS-CoV-2/genética , AnimalesRESUMEN
Major histocompatibility complex (MHC)-bound peptides that originate from tumor-specific genetic alterations, known as neoantigens, are an important class of anticancer therapeutic targets. Accurately predicting peptide presentation by MHC complexes is a key aspect of discovering therapeutically relevant neoantigens. Technological improvements in mass spectrometry-based immunopeptidomics and advanced modeling techniques have vastly improved MHC presentation prediction over the past 2 decades. However, improvement in the accuracy of prediction algorithms is needed for clinical applications like the development of personalized cancer vaccines, the discovery of biomarkers for response to immunotherapies, and the quantification of autoimmune risk in gene therapies. Toward this end, we generated allele-specific immunopeptidomics data using 25 monoallelic cell lines and created Systematic Human Leukocyte Antigen (HLA) Epitope Ranking Pan Algorithm (SHERPA), a pan-allelic MHC-peptide algorithm for predicting MHC-peptide binding and presentation. In contrast to previously published large-scale monoallelic data, we used an HLA-null K562 parental cell line and a stable transfection of HLA allele to better emulate native presentation. Our dataset includes five previously unprofiled alleles that expand MHC diversity in the training data and extend allelic coverage in underprofiled populations. To improve generalizability, SHERPA systematically integrates 128 monoallelic and 384 multiallelic samples with publicly available immunoproteomics data and binding assay data. Using this dataset, we developed two features that empirically estimate the propensities of genes and specific regions within gene bodies to engender immunopeptides to represent antigen processing. Using a composite model constructed with gradient boosting decision trees, multiallelic deconvolution, and 2.15 million peptides encompassing 167 alleles, we achieved a 1.44-fold improvement of positive predictive value compared with existing tools when evaluated on independent monoallelic datasets and a 1.17-fold improvement when evaluating on tumor samples. With a high degree of accuracy, SHERPA has the potential to enable precision neoantigen discovery for future clinical applications.
Asunto(s)
Neoplasias , Péptidos , Humanos , Péptidos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II , Complejo Mayor de Histocompatibilidad , Antígenos HLA/genética , Antígenos HLA/metabolismoRESUMEN
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Calidad de Vida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Linfocitos Infiltrantes de Tumor , Inmunoterapia , Microambiente TumoralRESUMEN
Personalized neoantigen therapy has shown long-term and stable efficacy in specific patient populations. However, not all patients have sufficient levels of neoantigens for treatment. Although somatic mutations are commonly found in tumours, a significant portion of these mutations do not trigger an immune response. Patients with low mutation burdens continue to exhibit unresponsiveness to this treatment. We propose a design paradigm for neoantigen vaccines by utilizing the highly immunogenic unnatural amino acid p-nitrophenylalanine (pNO2Phe) for sequence alteration of somatic mutations that failed to generate neoepitopes. This enhances the immunogenicity of the mutations and transforms it into a suitable candidate for immunotherapy. The nitrated altered epitope vaccines designed according to this paradigm is capable of activating circulating CD8+ T cells and inducing immune cross-reactivity against autologous mutated epitopes in different MHC backgrounds (H-2Kb, H-2Kd, and human HLA-A02:01), leading to the elimination of tumour cells carrying the mutation. After immunization with the altered epitopes, tumour growth was significantly inhibited. It is noteworthy that nitrated epitopes induce tumour-infiltrating macrophages to differentiate into the M1 phenotype, surprisingly enhancing the MHC II molecule presenting pathway of macrophages. Nitrated epitope-treated macrophages have the potential to cross-activate CD4+ and CD8+ T cells, which may explain why pNO2Phe can enhance the immunogenicity of epitopes. Meanwhile, the immunosuppressive microenvironment of the tumour is altered due to the activation of macrophages. The nitrated neoantigen vaccine strategy enables the design of vaccines targeting non-immunogenic tumour mutations, expanding the pool of potential peptides for personalized and shared novel antigen therapy. This approach provides treatment opportunities for patients previously ineligible for new antigen vaccine therapy.
RESUMEN
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Inmunoterapia/métodos , Antígenos de Neoplasias/inmunología , SARS-CoV-2/inmunología , Quimioradioterapia/métodosRESUMEN
The conventional type 1 dendritic cells (cDC1) play a pivotal role in protective immunity against pathogens and cancer. However, their low frequency in the blood and tissues limits their use in immune therapy. We have recently described a method to vaccinate against neoantigens that are induced in tumor cells by targeted delivery of a TAP siRNA to dendritic cells using a TLR9 binding CpG oligonucleotide. Since TLR9 is also expressed in immune suppressive myeloid populations TLR9 targeting could reduce the effectiveness of this approach. Here, we describe a modular multivalent antibody platform to target the TAP siRNA to resident Clec9a expressing cDC1 and show that it leads to selective and sustained TAP downregulation in cDC1 and inhibits tumor growth in mice more effectively than CpG targeted siRNA. To induce DC maturation an agonistic CD40 antibody was administered to the siRNA treated mice. To obviate the need for a second drug formulation and reduce the risk of toxicity, we exploited the multivalent nature of this targeting platform to co-deliver the TAP siRNA and a DC maturation agent, a CpG containing oligonucleotide, to cDC1 in vivo and show that it was more effective than Clec9a targeting of TAP siRNA in combination with CD40 antibody. This study describes a way to manipulate the function of cDC1 cells in vivo using a broadly applicable antibody-based targeting platform to deliver multiple biological agents to specific cells in vivo to potentiate (immune) therapy and to probe the biology of specific cell types in their natural settings.
Asunto(s)
Reactividad Cruzada , Receptor Toll-Like 9 , Animales , Ratones , Anticuerpos , Vacunación , ARN Interferente Pequeño/genética , Antígenos CD40 , OligonucleótidosRESUMEN
In the past decade, cancer immunotherapy has revolutionized the field of oncology. Major immunotherapy approaches such as immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, cytokines, and immunomodulators have shown great promise in preclinical and clinical settings. Among them, immunomodulatory agents including cancer vaccines are particularly appealing; however, they face limitations, notably the absence of efficient and precise targeted delivery of immune-modulatory agents to specific immune cells and the potential for off-target toxicity. Nanomaterials can play a pivotal role in addressing targeting and other challenges in cancer immunotherapy. Dendritic mesoporous silica nanoparticles (DMSNs) can enhance the efficacy of cancer vaccines by enhancing the effective loading of immune modulatory agents owing to their tunable pore sizes. In this work, an emulsion-based method is optimized to customize the pore size of DMSNs and loaded DMSNs with ovalbumin (OVA) and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (CpG-OVA-DMSNs). The immunotherapeutic effect of DMSNs is achieved through controlled chemical release of OVA and CpG in antigen-presenting cells (APCs). The results demonstrated that CpG-OVA-DMSNs efficiently activated the immune response in APCs and reduced tumor growth in the murine B16-OVA tumor model.
RESUMEN
Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.
Asunto(s)
Nanopartículas , Neoplasias , Nitrilos , Humanos , Porosidad , Dióxido de Silicio/química , Inmunoterapia , Nanopartículas/química , Neoplasias/terapia , EsqueletoRESUMEN
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
RESUMEN
Tumors are mostly characterized by genetic instability, as result of mutations in surveillance mechanisms, such as DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. Defect in one or more of these mechanisms causes additive accumulation of mutations. Some of these mutations are drivers of transformation and are positively selected during the evolution of the cancer, giving a growth advantage on the cancer cells. If such mutations would result in mutated neoantigens, these could be actionable targets for cancer vaccines and/or adoptive cell therapies. However, the results of the present analysis show, for the first time, that the most prevalent mutations identified in human cancers do not express mutated neoantigens. The hypothesis is that this is the result of the selection operated by the immune system in the very early stages of tumor development. At that stage, the tumor cells characterized by mutations giving rise to highly antigenic non-self-mutated neoantigens would be efficiently targeted and eliminated. Consequently, the outgrowing tumor cells cannot be controlled by the immune system, with an ultimate growth advantage to form large tumors embedded in an immunosuppressive tumor microenvironment (TME). The outcome of such a negative selection operated by the immune system is that the development of off-the-shelf vaccines, based on shared mutated neoantigens, does not seem to be at hand. This finding represents the first demonstration of the key role of the immune system on shaping the tumor antigen presentation and the implication in the development of antitumor immunological strategies.
Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/genética , Mutación/genética , Puntos de Control del Ciclo Celular , Inmunoterapia , Microambiente TumoralRESUMEN
Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80µg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.
Asunto(s)
Oro , Inmunoterapia , Rayos Infrarrojos , Iridoides , Nanotubos , Ovalbúmina , Oro/química , Iridoides/química , Iridoides/farmacología , Animales , Ovalbúmina/química , Ovalbúmina/inmunología , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Femenino , Nanotubos/química , Terapia Fototérmica/métodos , Fototerapia/métodos , Ratones Endogámicos BALB C , Humanos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Células Dendríticas/inmunología , Resonancia por Plasmón de SuperficieRESUMEN
OPINION STATEMENT: Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Asunto(s)
Neoplasias del Sistema Biliar , Inmunoterapia , Humanos , Neoplasias del Sistema Biliar/terapia , Neoplasias del Sistema Biliar/diagnóstico , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Terapia Combinada/métodos , Biomarcadores de Tumor , Estadificación de Neoplasias , Resultado del Tratamiento , Vacunas contra el Cáncer/uso terapéutico , Manejo de la Enfermedad , Terapia Molecular Dirigida/métodos , Ensayos Clínicos como AsuntoRESUMEN
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Asunto(s)
Neoplasias Encefálicas , Glioma , Inmunoterapia , Humanos , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
Immunotherapies have become the first line of treatment for many cancer types. Unfortunately, only a small fraction of patients benefits from these therapies. This low rate of success can be attributed to 3 main barriers: 1) low frequency of anti-tumor specific T cells; 2) lack of infiltration of the anti-tumor specific T cells into the tumor parenchyma and 3) accumulation of highly suppressive cells in the tumor mass that inhibit the effector function of the anti-tumor specific T cells. Thus, the identification of immunomodulators that can increase the frequency and/or the infiltration of antitumor specific T cells while reducing the suppressive capacity of the tumor microenvironment is necessary to ensure the effectiveness of T cell immunotherapies. In this review, we discuss the potential of poly-ICLC as a multi-functional immune modulator for treating cancer and its impact on the 3 above mentioned barriers. We describe the unique capacity of poly-ICLC in stimulating 2 separate pattern recognition receptors, TLR3 and cytosolic MDA5 and the consequences of these activations on cytokines and chemokines production. We emphasize the role of poly-ICLC as an adjuvant in the setting of peptide-based cancer vaccines and in situ tumor vaccination by mimicking natural immune responses to infections. Finally, we summarize the impact of poly-ICLC in enhancing T infiltration into the tumor parenchyma and address the implication of this finding in the clinic.
Asunto(s)
Antineoplásicos/farmacología , Carboximetilcelulosa de Sodio/análogos & derivados , Factores Inmunológicos/farmacología , Inmunomodulación , Poli I-C/inmunología , Poli I-C/farmacología , Polilisina/análogos & derivados , Animales , Antineoplásicos/uso terapéutico , Carboximetilcelulosa de Sodio/farmacología , Carboximetilcelulosa de Sodio/uso terapéutico , Citocinas/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Inmunomodulación/efectos de los fármacos , Helicasa Inducida por Interferón IFIH1/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Poli I-C/uso terapéutico , Polilisina/inmunología , Polilisina/farmacología , Polilisina/uso terapéutico , Receptores de Reconocimiento de Patrones/metabolismo , Receptor Toll-Like 3/metabolismoRESUMEN
Despite the enormous success of childhood prophylactic vaccination against diseases caused by pathogens, there is currently no similar preventive vaccine program against diseases confronted with age like breast cancer and ovarian cancer. With the exception of the annual influenza vaccine, current recommendations for adult vaccination are for either primary vaccines not received during childhood or for booster vaccinations to maintain the immunity against pathogens already induced during childhood. Here we describe a strategy to provide prophylactic pre-emptive immunity against the development of adult onset cancers not associated with any definitive etiopathogenic agent. We propose that safe and effective pre-emptive immunity may be induced in cancer-free subjects by vaccination against immunodominant tissue-specific self-proteins that are 'retired' from expression in normal tissues as part of the normal aging process but are expressed in tumors that emerge with age. Primary immunoprevention of adult onset cancers like breast cancer and ovarian cancer represents a great challenge and an even greater unmet need for our current healthcare.
Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias/inmunología , Neoplasias/prevención & control , Vacunación , Edad de Inicio , Autoantígenos/inmunología , Biomarcadores , Vacunas contra el Cáncer/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Inmunidad , Neoplasias/diagnóstico , Neoplasias/epidemiología , Especificidad de Órganos/inmunología , Transducción de SeñalRESUMEN
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
LBNPs are tiny artificial particles made of lipids using different formulation methods. They are powerful and versatile delivery platforms with great potential as anticancer therapies. LBNPs have been tested in clinical applications and can safely deliver anticancer agents, including vaccine payloads designed to target various cancer types.LBNPs' size, surface charge, and targeting ligands can be modified during formulation, and they can be administered to specific tissues via various routes. LBNPs can target tumours and release their payload via active, passive, or stimuli-responsive mechanisms.Active targeting requires surface modification in order to target and deliver their payload, while passive targeting do not. Stimuli-responsive release mechanisms move to the tumour microenvironment and release their payload upon an internal or external stimulus.There are several challenges faced by LBNPs in delivering cancer drugs and vaccines, but advanced research methods have opened new doors vital for expanding their applications in clinical oncology.LBNPs offer the advantage of enhanced drug stability and bioavailability, prolonged circulation time of therapeutic agents in the bloodstream, and improved efficacy in targeting cancerous tissues.